当前位置: 首页 > news >正文

建立自己网站要多少钱找工作的网站平台

建立自己网站要多少钱,找工作的网站平台,台山市网站建设,网站开发技术包括什么教程原文:双Y轴截断图绘制教程 本期教程 本期教程,我们提供的原文的译文,若有需求请回复关键词:20240529 小杜的生信笔记,自2021年11月开始做的知识分享,主要内容是R语言绘图教程、转录组上游分析、转录组…

教程原文:双Y轴截断图绘制教程

本期教程

本期教程,我们提供的原文的译文,若有需求请回复关键词:20240529

小杜的生信笔记,自2021年11月开始做的知识分享,主要内容是R语言绘图教程转录组上游分析转录组下游分析等内容。凡事在社群同学,可免费获得自2021年11月份至今全部教程,教程配备事例数据和相关代码,我们会持续更新中。

往期教程部分内容













教程来源:
Yunyun Gao, Hao Luo, Yong-Xin Liu,et al, Benchmarking metagenomics tools for purging host contamination.

绘图代码

library(ggplot2)
library(tidyverse)
library(ggbreak)
library(dunn.test)
library(car)
data <- read.table("data.txt", head = TRUE, sep = "\t")
# Select the relevant columns for data1
data1 <- data[, c("Software", "Taxa", "Rss")]
data2 <- data[, c("Software", "Taxa", "Time")]data1$Software <- factor(data1$Software, levels = c( "BWA","Bowtie2","Kneaddata", "KMCP", "Kraken2", "Krakenuniq"))
ggplot(data1) +geom_col(aes(x = Software, y = Rss, fill = Taxa), position = 'dodge', width = 0.8) +scale_fill_manual(values = c('Rice' = '#fec79e', 'Human' = '#8ec4cb')) +labs(x = "Software", y = "Memory usage / Gigabytes") +theme_minimal() +theme_test(base_size = 24) +theme(legend.position = 'none',panel.border = element_rect(size = 2, fill = 'transparent'),axis.text = element_text(color = 'black'),axis.text.x = element_text(angle = 45, hjust = 1)  # Rotate x-axis labels for better visibility) +geom_rect(aes(xmin = 0.5, xmax = 0.8, ymin = 53, ymax = 57), fill = '#8ec4cb', color = '#8ec4cb') +geom_rect(aes(xmin = 1.4, xmax = 1.7, ymin = 53, ymax = 57), fill = '#fec79e', color = '#fec79e') +annotate(geom = 'text', x = 1.9, y = 55, label = 'Rice', size = 7) +annotate(geom = 'text', x = 1.1, y = 55, label = 'Human', size = 7) +scale_y_continuous(breaks = c(seq(0, 10, 10), seq(5, 10, 5), seq(20, 60, 10)),limits = c(0, 60),expand = c(0, 0),sec.axis = sec_axis(~ .*5, name = 'Time consumption / minutes', breaks = c(seq(0, 50, 25), seq(50, 300, 50)))) +geom_point(data = data2, aes(x = factor(Software), y = Time * 0.2, color = Taxa, group = Taxa), shape=17, size = 5, na.rm = TRUE) +scale_color_manual(values = c('#1e8b9b', '#ff8c3e')) +scale_y_break(c(6,11), space = 0, scales = 1.8)

Check Time of all taxa, Normality test

shapiro_test <- by(data$Time, data$Taxa, shapiro.test)# Extract p-values from each group's test results
p_values <- sapply(shapiro_test, function(x) x$p.value)# Check if each group conforms to normal distribution
normal_data <- p_values > 0.05if (all(normal_data)) {
summary_stats <- aggregate(Time ~ Taxa, data = data, FUN = function(x) c(mean = mean(x), se = sd(x)/sqrt(length(x))))
print(summary_stats)
} else {
summary_stats <- aggregate(Time ~ Taxa, data = data, FUN = function(x) c(median = median(x), p25 = quantile(x, 0.25), p75 = quantile(x, 0.75)))
print(summary_stats)
}
#>    Taxa Time.mean   Time.se
#> 1 Human 99.474900 35.348141
#> 2  Rice  8.478217  2.883665levene_test_result <- leveneTest(Time ~ Taxa, data = data)
p_value_levene <- levene_test_result$`Pr(>F)`[1]if (all(normal_data)) {
if (p_value_levene > 0.05) {t_test_result <- t.test(Time ~ Taxa, data = data, paired = TRUE)print(t_test_result)
} else {wilcox_result <- wilcox.test(Time ~ Taxa, data = data, paired = TRUE)print(wilcox_result)
}
} else {
wilcox_result <- wilcox.test(Time ~ Taxa, data = data, paired = TRUE)
print(wilcox_result)
}
#> 
#>  Wilcoxon signed rank exact test
#> 
#> data:  Time by Taxa
#> V = 21, p-value = 0.03125
#> alternative hypothesis: true location shift is not equal to 0
shapiro_test <- by(data$Rss, data$Taxa, shapiro.test)# Extract p-values from each group's test results
p_values <- sapply(shapiro_test, function(x) x$p.value)# Check if each group conforms to normal distribution
normal_data <- p_values > 0.05if (all(normal_data)) {summary_stats <- aggregate(Rss ~ Taxa, data = data, FUN = function(x) c(mean = mean(x), se = sd(x)/sqrt(length(x))))print(summary_stats)
} else {summary_stats <- aggregate(Rss ~ Taxa, data = data, FUN = function(x) c(median = median(x), p25 = quantile(x, 0.25), p75 = quantile(x, 0.75)))print(summary_stats)
}
#>    Taxa Rss.median Rss.p25.25% Rss.p75.75%
#> 1 Human  5.6300000   4.8150000  18.2650000
#> 2  Rice  0.8040332   0.5614160   2.1725659levene_test_result <- leveneTest(Rss ~ Taxa, data = data)
p_value_levene <- levene_test_result$`Pr(>F)`[1]if (all(normal_data)) {if (p_value_levene > 0.05) {t_test_result <- t.test(Rss ~ Taxa, data = data, paired = TRUE)print(t_test_result)} else {wilcox_result <- wilcox.test(Rss ~ Taxa, data = data, paired = TRUE)print(wilcox_result)}
} else {wilcox_result <- wilcox.test(Rss ~ Taxa, data = data, paired = TRUE)print(wilcox_result)
}
#> 
#>  Wilcoxon signed rank exact test
#> 
#> data:  Rss by Taxa
#> V = 21, p-value = 0.03125
#> alternative hypothesis: true location shift is not equal to 0

教程原文:双Y轴截断图绘制教程

若我们的教程对你有所帮助,请点赞+收藏+转发,这是对我们最大的支持。

往期部分文章

1. 最全WGCNA教程(替换数据即可出全部结果与图形)

  • WGCNA分析 | 全流程分析代码 | 代码一

  • WGCNA分析 | 全流程分析代码 | 代码二

  • WGCNA分析 | 全流程代码分享 | 代码三

  • WGCNA分析 | 全流程分析代码 | 代码四

  • WGCNA分析 | 全流程分析代码 | 代码五(最新版本)


2. 精美图形绘制教程

  • 精美图形绘制教程

3. 转录组分析教程

  • 转录组上游分析教程[零基础]

  • 一个转录组上游分析流程 | Hisat2-Stringtie

4. 转录组下游分析

  • 批量做差异分析及图形绘制 | 基于DESeq2差异分析

  • GO和KEGG富集分析

  • 单基因GSEA富集分析

  • 全基因集GSEA富集分析

小杜的生信筆記 ,主要发表或收录生物信息学教程,以及基于R分析和可视化(包括数据分析,图形绘制等);分享感兴趣的文献和学习资料!!

http://www.yayakq.cn/news/313580/

相关文章:

  • 昆山外贸型网站制作在线设计logo图标
  • 南宁网站建设是什么如果让你建设一个网站
  • 做网站有什么js特效网站界面建议
  • 广州朝阳网站建设做网站哪些技术
  • 一个网站3个相似域名和平东路网站建设
  • 首饰网站模板扫二维码进入个人的购物网站如何做
  • 台州国强建设网站免费发布卖车信息网站
  • 毕节做网站优化wordpress模板购买
  • 该网站是恶意网站wordpress 视
  • 物理机安装虚拟机做网站网站搭建吧
  • 自己做的网站怎么改背景图云主机和云电脑的区别
  • j永久网站备案域名卖出后涉赌怎么办
  • 动态效果网站建设技术在印度做视频网站
  • 网站建设案例欣赏网站抓取qq
  • 网站seo排名查询贵阳建设企业网站
  • 常平镇网站建设网站图片验证码出不来
  • 如何给网站加关键词学校做网站有些什么好处
  • 手机网站什么意思网站开发服务费
  • 服饰类电商网站建设策划wordpress 图片加水印
  • 的建站公司软件技术要学什么
  • 男女做羞羞的故事网站宜昌手机网站制作
  • 网站建设基础教程视频关于网站制作的评价
  • 广州微网站建设案例做网站 要学 什么语言
  • 做美妆网站名称wordpress手机菜单导航
  • 权威网站建设网站关键词推广企业
  • 做网站怎么做邢台网站制作报价多少钱
  • 宜昌微网站建设微信运营模式
  • 枣庄网站制作桂林生活网官网首页
  • 麦包包的网站建设分析互联网营销顾问是做什么的
  • 江门h5模板建站网站页面布局优化