当前位置: 首页 > news >正文

校园网站建设与管理钓鱼网站在线制作

校园网站建设与管理,钓鱼网站在线制作,网页设计作业古诗,网站建网站建设企业一、说明 Computer Vision(CV)是一个研究计算机如何从数字图像和/或视频中获得一定程度的理解的领域。理解这个定义具有相当广泛的含义 - 它可以从能够区分图片上的猫和狗,到更复杂的任务,例如用自然语言描述图像。 二、CV常见的问…

一、说明

Computer Vision(CV)是一个研究计算机如何从数字图像和/或视频中获得一定程度的理解的领域。理解这个定义具有相当广泛的含义 - 它可以从能够区分图片上的猫和狗,到更复杂的任务,例如用自然语言描述图像。

二、CV常见的问题

        计算机视觉最常见的问题包括:

  • 图像分类是最简单的任务,当我们需要将图像分类为许多预定义类别之一时,例如,区分照片上的猫和狗,或识别手写数字。
  • 目标检测是一项比较困难的任务,我们需要在图片上找到已知对象并对其进行定位,即返回每个识别对象的边界框。
  • 分割类似于对象检测,但我们需要返回一个精确的像素图,概述每个识别的对象,而不是给出边界框。

        我们将专注于图像分类任务,以及如何使用神经网络来解决它。与任何其他机器学习任务一样,要训练用于对图像进行分类的模型,我们需要一个标记的数据集,即每个类的大量图像。

三、图像作为张量

        计算机视觉适用于图像。您可能知道,图像由像素组成,因此可以将它们视为像素的矩形集合。

        在本单元的第一部分中,我们将处理手写数字识别。我们将使用 MNIST 数据集,该数据集由手写数字的灰度图像组成,28x28 像素。每个图像都可以表示为 28x28 数组,该数组的元素将表示相应像素的强度 - 在 0 到 1 范围内(在这种情况下使用浮点数),或者 0 到 255(整数)。一个名为numpy的流行python库通常用于计算机视觉任务,因为它允许有效地操作多维数组。

        为了处理彩色图像,我们需要一些方法来表示颜色。在大多数情况下,我们用 3 个强度值表示每个像素,对应于红色 (R)、绿色 (G) 和蓝色 (B) 分量。这种颜色编码称为RGB,因此大小为W×H的彩色图像将表示为大小
为3 × H × W的数组。

        使用多维数组来表示图像也有一个优势,因为我们可以使用额外的维度来存储图像序列。
例如,为了表示由 200 帧组成的视频片段,维度为 800 × 600,我们可以使用大小为 200 × 3 × 600 × 800 的张量。

        多维数组也称为张量。通常,当我们谈论一些神经网络框架时,我们指的是张量,例如 PyTorch。PyTorch 和 numpy 数组中的张量之间的主要区别在于,张量支持 GPU 上的并行操作(如果可用)。此外,PyTorch 在张量上操作时提供了额外的功能,例如自动微分。

四、导入包并加载 MNIST 数据集

!pip install -r https://raw.githubusercontent.com/MicrosoftDocs/pytorchfundamentals/main/computer-vision-pytorch/requirements.txt
#Import the packages needed.
import torch
import torchvision
import matplotlib.pyplot as plt
import numpy as np

        PyTorch有许多直接从库中可用的数据集。在这里,我们使用众所周知的手写数字MNIST数据集,可通过PyTorch中的torchvison.datasets.MNIST获得。数据集对象以 Python 想象库 (PIL) 图像的形式返回数据,我们通过传递 transform = ToTensor() 参数将其转换为张量。

        使用自己的笔记本时,您还可以尝试其他内置数据集,特别是FashionMNIST数据集

from torchvision.transforms import ToTensordata_train = torchvision.datasets.MNIST('./data',download=True,train=True,transform=ToTensor())
data_test = torchvision.datasets.MNIST('./data',download=True,train=False,transform=ToTensor())

五、可视化数据集

现在我们已经下载了数据集,我们可以可视化数字。

fig,ax = plt.subplots(1,7)
for i in range(7):ax[i].imshow(data_train[i][0].view(28,28))ax[i].set_title(data_train[i][1])ax[i].axis('off')

六、数据集结构

        我们总共有 6000 张训练图像和 1000 张测试图像。拆分数据以进行训练和测试非常重要。我们还想做一些数据探索,以更好地了解我们的数据是什么样子的。

每个样本都是以下结构的元组:

  • 第一个元素是一个数字的实际图像,由形状为 1 × 28 × 28 的张量表示
  • 第二个元素是一个标签,用于指定张量表示哪个数字。它是一个张量,包含从 0 到 9 的数字

data_train是一个训练数据集,我们将使用它来训练我们的模型。data_test是一个较小的测试数据集,我们可以用来验证我们的模型。

print('Training samples:',len(data_train))
print('Test samples:',len(data_test))print('Tensor size:',data_train[0][0].size())
print('First 10 digits are:', [data_train[i][1] for i in range(10)])
Training samples: 60000
Test samples: 10000
Tensor size: torch.Size([1, 28, 28])
First 10 digits are: [5, 0, 4, 1, 9, 2, 1, 3, 1, 4]

图像的所有像素强度都由介于 0 和 1 之间的浮点值表示:

print('Min intensity value: ',data_train[0][0].min().item())
print('Max intensity value: ',data_train[0][0].max().item())
Min intensity value:  0.0
Max intensity value:  1.0

祝你学习愉快!V笔记本

 
http://www.yayakq.cn/news/912486/

相关文章:

  • 电商网站开发缓存wordpress多形式
  • 系部网站建设中期检查表怎么自己做公司网站
  • 河北农业建设信息网站用wordpress建站学什么
  • 网站私信界面建站行业的发展趋势
  • 东莞 网站建设收费wordpress调用分类栏目
  • 丹东建设安全监督网站沂南网站设计
  • 网站优化大计隧道建设杂志网站
  • 国家资源库建设网站前程无忧招聘网
  • 如何维护wordpress江门网站快速排名优化
  • 做定制网站价格在西部数码上再备案一个网站ftp
  • 阿里云 域名 做网站宁波网站公司哪里好
  • 郑州旅游网站建设系统开发中强调系统的整体性
  • 平阳企业网站建设太原制作响应式网站
  • 备案网站名称大全基于h5的移动网站开发
  • 网站开发的思维导图网站开发与设计实训总结两千字
  • wordpress零基础建站教程国家住房和城乡建设厅网站
  • 如何搭建静态网站源码wordpress密码忘
  • 镇江市扬中市做网站吉安网络科技有限公司
  • 建设银行网站机构特点业务发展企业网站cms模板
  • 三明商城网站开发设计广州it培训机构
  • 自己做网络主播的网站长春市建设集团股份有限公司
  • 网站建设教程视频教程昆山公司网站建设
  • 网站建设的心得基于微信公众平台的微网站开发
  • 东莞代理记账英文seo优化包年费用
  • 浙江大经建设集团网站做书籍封皮的网站
  • 成都兴光华城市建设公司网站河南seo推广
  • 国外js网站安徽网站开发费用
  • 深圳网站建设V芯ee8888e企业网络推广公司
  • 如何制作企业网站网站优化工作
  • 免费html网站模板外贸网站系统