当前位置: 首页 > news >正文

戴尔网站建设目标做网站推广销售产品

戴尔网站建设目标,做网站推广销售产品,最新中国企业500强名单,平面设计创意系列文章目录 目录 系列文章目录 前言 一、Lerobot So100/So101 微调教程 1.1 数据集 1.2 微调 1.3 开环评估 1.4 部署 二、Unitree G1 微调 2.1 下载数据集 2.2 尝试加载数据集并可视化它 2.3 微调 2.4 开环评估 2.5 部署 前言 本笔记本是一份关于如何在新的数据…

系列文章目录

    目录

    系列文章目录

    前言

    一、Lerobot So100/So101 微调教程

    1.1 数据集

    1.2 微调

    1.3 开环评估

    1.4 部署

    二、Unitree G1 微调

    2.1 下载数据集

    2.2 尝试加载数据集并可视化它

    2.3 微调

    2.4 开环评估

    2.5 部署


    前言

            本笔记本是一份关于如何在新的数据集上对GR00T-N1预训练模型进行微调的教程。


    一、Lerobot So100/So101 微调教程

            GR00T-N1.5 适用于各种机器人形态的用户。基于 Huggingface 的低成本 So101 Lerobot 机械臂,用户可通过 new_embodiment 标签在自己的机器人上对 GR00T-N1.5 进行微调。

    So100 Strawberry and Grape PickingSo101 Table Cleanup Task

    {width=400}

    {width=400}

    DatasetObservationViz Link
    so101-table-cleanupDual camera views of table cleanup taskLink
    so100_strawberry_grapeSingle camera view of strawberry and grape pickingLink
    tictac-botSingle camera view of a tic-tac-toe boardLink

    1.1 数据集

            用户可以使用任何 lerobot 数据集进行微调。在本教程中,我们将首先使用一个示例数据集:so101-table-cleanup

    请注意,此实现未包含在我们的预训练数据集混合中。

    首先,下载数据集

    huggingface-cli download \--repo-type dataset youliangtan/so101-table-cleanup \--local-dir ./demo_data/so101-table-cleanup

            其次,复制模态文件

    modality.json 文件提供了关于状态和动作模态的额外信息,以使其与“GR00T”兼容。将 examples/so100_dualcam__modality.json 复制到数据集 <DATASET_PATH>/meta/modality.json。

            对于类似 so101-table-cleanup 数据集的双摄像头设置,请执行以下操作:

    cp examples/so100_dualcam__modality.json ./demo_data/so101-table-cleanup/meta/modality.json

            对于单摄像头设置,如 so100_strawberry_grape 数据集,请执行以下操作:

    cp examples/so100__modality.json ./demo_data/so100_strawberry_grape/meta/modality.json

    然后我们可以使用LeRobotSingleDataset类加载数据集。

    1.2 微调

            微调可以通过使用我们的微调脚本/gr00t_finetune.py来完成,因为它支持“new-embodiment”标签。

    python scripts/gr00t_finetune.py \--dataset-path /datasets/so101-table-cleanup/ \--num-gpus 1 \--batch-size 64 \--output-dir ~/so101-checkpoints  \--max-steps 10000 \--data-config so100_dualcam \--video-backend torchvision_av

    将批处理大小调整为与您的GPU内存匹配。

    1.3 开环评估

            训练完成后,您可以运行以下命令来可视化微调后的策略。

    python scripts/eval_policy.py --plot \--embodiment_tag new_embodiment \--model_path <YOUR_CHECKPOINT_PATH> \--data_config so100_dualcam \--dataset_path /datasets/so101-table-cleanup/ \--video_backend torchvision_av \--modality_keys single_arm gripper

            这是在训练策略7000步后的结果。

            

            经过更多步骤的训练后,模型性能将显著提升。

            太棒了!您已成功在新的实现上对GR00T-N1.5进行了微调。

    1.4 部署

            首先,确保数据可重放,请参考lerobot文档:https://huggingface.co/docs/lerobot/so101

            在机器人上评估策略:

    python eval_lerobot.py \--robot.type=so101_follower \--robot.port=/dev/ttyACM0 \--robot.id=lil_guy \--robot.cameras="{ wrist: {type: opencv, index_or_path: 9, width: 640, height: 480, fps: 30}, front: {type: opencv, index_or_path: 15, width: 640, height: 480, fps: 30}}" \--policy_host=10.112.209.136 \--lang_instruction="Grab pens and place into pen holder."

    有关部署的更多详细信息,请参阅笔记本:5_policy_deployment.md

    二、Unitree G1 微调

            本节展示如何在 Unitree G1 机器人上进行微调,作为新的实现方式。数据集可从以下链接获取:nvidia/PhysicalAI-Robotics-GR00T-Teleop-G1

    规格:

    • 观察:43 维向量化状态(全身和双手的关节位置)
    • 动作:43 维向量化动作(全身和双手的关节位置)
    • 视频:RGB 视频,分辨率为 640x480,帧率为 20fps
    • 语言指令:
      • “从桌子上拿起苹果,把它放进篮子里。”
      • “从桌子上拿起梨并放入篮子。”
      • “从桌子上拿起葡萄并放入篮子。”
      • “从桌子上拿起星果并放入篮子。”

    2.1 下载数据集

    huggingface-cli download \--repo-type dataset nvidia/PhysicalAI-Robotics-GR00T-Teleop-G1 \--local-dir ./datasets/

    2.2 尝试加载数据集并可视化它

            示例:加载苹果数据集的第一集

    python scripts/load_dataset.py --dataset-path datasets/PhysicalAI-Robotics-GR00T-Teleop-G1/g1-pick-apple/ --plot-state-action### Similar for other fruits
    # Switch to other fruits -- pear, grapes, starfruit

            ·您应看到以下图表:

    2.3 微调

            在此,我们可以提供用于微调的數據集列表。我们将使用包含苹果、梨、葡萄和星果采摘任务的混合数据集对模型进行微调。

    dataset_list=("datasets/PhysicalAI-Robotics-GR00T-Teleop-G1/g1-pick-apple/""datasets/PhysicalAI-Robotics-GR00T-Teleop-G1/g1-pick-pear/""datasets/PhysicalAI-Robotics-GR00T-Teleop-G1/g1-pick-grapes/""datasets/PhysicalAI-Robotics-GR00T-Teleop-G1/g1-pick-starfruit/"
    )python scripts/gr00t_finetune.py \--dataset-path ${dataset_list[@]} \--num-gpus 1 --batch-size 95  --output-dir ~/checkpoints/full-g1-mix-fruits/  \--data-config unitree_g1 --max-steps 15000

    注意:由于该数据集采用H.264编码格式录制,因此在加载视频时需使用decord后端。

    2.4 开环评估

            示例:评估苹果数据集

    python scripts/eval_policy.py --plot \--embodiment_tag new_embodiment \--model_path <YOUR_CHECKPOINT_PATH> \--data_config unitree_g1 \--dataset_path datasets/PhysicalAI-Robotics-GR00T-Teleop-G1/g1-pick-apple/ \--video_backend decord \--modality_keys left_arm right_arm

            我们可以看出,策略对动作的预测似乎与真实情况非常接近,这表明微调是成功的。然而,对于策略的实际性能,我们需要在真实机器人上进行评估。

    2.5 部署

            G1 的部署脚本在此未提供。但该管道与 so100 微调管道类似。

    http://www.yayakq.cn/news/239912/

    相关文章:

  • 饮料网站模板中企动力科技股份有限公司淄博分公司
  • 怎么用wordpress修改网站源码网站开发提供图片加载速度
  • 雄安做网站价格电商需要多少钱
  • 海口网站建设介绍物流网络平台建设
  • 自己做一个购物网站稿定设计app免费版下载
  • 宿迁网站建设推广网站模板库 下载
  • 青海企业网站开发定制wordpress密码忘
  • 网站设计建设方案网站建设行业发展史
  • 网站建设中扁平化结构网站建设费用 百度文库
  • 网站开发 佛山昆明网站建设公司多少钱
  • 北京专业做网站的公司wordpress相册灯箱
  • 南京医院网站建设方案网站建设 需求
  • 河北省建设厅网站官网网店运营实务
  • 网站建设欣四川建设网四川住建厅
  • 重庆大渡口建设网站营销型企业网站功能
  • 网站设计师认证培训动态个人网页制作html教程
  • 网站推广途径选择建德市住房和城乡建设局网站
  • 文化传媒 网站设计包做包装的网站
  • 网站建设公司哪家好?电商网站系统
  • 石材网站建设闻喜网站建设
  • 沧州网站建设推广门头沟网站建设公司
  • 常熟苏州网站建设网上做名片的网站
  • 福州建设企业网站建设人才服务中心
  • 青州市住房和城乡建设局网站网站如何做流动字幕
  • 如何建设 营销型 网站做物流网站电话
  • seo站长综合查询工具深圳乐安居网站谁做的
  • 台州seo管理seo网站建设教程
  • 莱芜专业做网站的纪梵希网站设计分析
  • 山东菏泽建设银行网站自助建站代理
  • 做网站要买什么类型云空间廊坊建设企业网站