当前位置: 首页 > news >正文

成全视频免费观看在线看2024年新年贺词保定seo公司

成全视频免费观看在线看2024年新年贺词,保定seo公司,怎么让公司建设网站,个人如何通过网站赚大钱摘要 本文主要对大模型WizardLM的基本信息进行了简单介绍,展示了WizardLM取得的优秀性能,分析了论文的核心——指令进化方法。 论文概述 基本信息 英文标题:WizardLM: Empowering Large Language Models to Follow Complex Instructions中…

摘要

本文主要对大模型WizardLM的基本信息进行了简单介绍,展示了WizardLM取得的优秀性能,分析了论文的核心——指令进化方法。

论文概述

基本信息

  • 英文标题:WizardLM: Empowering Large Language Models to Follow Complex Instructions
  • 中文标题:WizardLM:授权大型语言模型遵循复杂的指令
  • 发表时间:2023年4月-arxiv
  • 作者单位:北京大学 & 微软
  • 论文链接:https://arxiv.org/abs/2304.12244
  • 代码链接:GitHub - nlpxucan/WizardLM: Family of instruction-following LLMs powered by Evol-Instruct: WizardLM, WizardCoder and WizardMath

摘要

  • 论文展示了使用LLM而不是人工来创建具有不同复杂程度的大量指令数据的途径。
  • 从一组初始指令开始,通过进化指令逐步将它们重写为更复杂的指令。然后,将生成的所有指令数据进行混合来微调LLaMA。
  • 论文将生成的模型称为WizardLM
  • 在复杂平衡测试平台和Vicuna测试集上的人类评估表明,来自evolution - instruct的指令优于人类创造的指令。
  • 通过分析高复杂性部分的人工评估结果,论文证明了WizardLM模型的输出比OpenAI,ChatGPT的输出更受欢迎。在GPT-4自动评估中,WizardLM在29项技能中的17项达到了ChatGPT 90%以上的能力

WizardLM模型性能优越,可以作为text2sql的基座模型,github上有个DB-GPT-Hub项目开源了大模型微调text2sql的pipline,模型支持也有WizardLM模型(这是DB-GPT项目的子项目),其中提供了数据集下载-数据集预处理-模型下载-模型微调-模型权重合并-模型预测-模型评估,如果没有GPU可以使用AutoDL平台按需使用。

  • DB-GPT项目:目前已有6.4k star,可以关注一波,目前该项目最新版本——DB-GPT V0.3.7 发布,支持用自然语言分析和查询Excel表格数据

  • DB-GPT_Hub项目:目前有200多star,专注于text2sql大模型微调领域,大家也可以去贡献代码,比如模型支持里面也有WizardLM

WizardLM模型的思想值得借鉴,后面还有模型Code Llama更加出色,后面再介绍。

结果

收集测试集

  • 网上收集的指令测试集:总共218个例子,分成了29项类别,比如有数学math、代码生成、写作等等。
  • 图3a说明了测试集中实例和技能的分布。测试集由218个实例组成,每个实例都是针对特定技能的指令。
  • 图3b比较了和Vicuna小羊驼、Alpaca羊驼

人工打分评估

为了评估WizardLM,在evolution - directive测试集上进行了人类评估。我们在WizardLM和基线之间进行盲两两比较。具体来说,招募了10名受过良好教育的注释员。对于每个注释者,提供了来自Alpaca、Vicuna-7b、WizardLM和ChatGPT的四个响应,这些响应被随机打乱以隐藏其来源。然后评注者根据附录h中的标准判断哪一个回答更好,然后他们应该将四个回答从1到5进行排序(1表示最好),并允许同等分数的可比较实例。

  • 比如图4a中Evol-Instruct testset数据集上,跟ChatGPT相比,WizardLM赢了61次,ChatGPT赢了89次,平局68次。(总共218)

GPT4自动评估

  • 如图5a和5b所示,WizardLM-78.0%在evolo-instruct测试集上的性能明显优于Alpaca-7B-71.8%和Vicuna-7B-72.2%(分别优于Alpaca-7B和Vicuna-7B的性能6.2%和5.8%)

  • 图6比较了WizardLM和ChatGPT在evolution - directive测试集上的技能水平。结果表明,WizardLM的平均性能达到了ChatGPT的78%,17项技能的容量几乎超过了90%。然而,WizardLM在代码、数学和推理场景方面遇到了困难,显示出与ChatGPT的明显差距。(所以后面有WizardCoder)

结论

本文提出了一种进化算法——evolution-directive,用于生成多种复杂的LLM指令数据。论文证明提出的方法提高了LLM的性能,WizardLM,在高复杂性任务上取得了最先进的结果,在其他指标上取得了具有竞争力的结果。

局限性(评估方法):本文承认我们的自动GPT-4和人工评估方法的局限性。这种方法对可扩展性和可靠性提出了挑战。此外,我们的测试集可能无法代表LLM可以应用或与其他方法进行比较的所有场景或领域。

更广泛的影响。evolo - instruct可以提高LLM在各个领域和应用中的性能和交互性,但它也可能产生不道德、有害或误导性的指令。因此,我们敦促未来对人工智能进化指令的研究,以解决伦理和社会影响。

核心思想

这个图看着还挺有意思的

很简约

图形化很不错

只不过作为模型核心结构会有点懵

instruction data evolution指令数据演化

输入指令I1-instruction,通过LLM得到答复R1-response

输入指令I2-instruction,通过LLM得到答复R2-response

不断迭代

指令I1如何更新为指令2?

  • 通过LLM instruction evolution prompt 指令进化提示词

instruction evolution prompt是什么?

  • 参考下方的指令进化器

Automatic Instruction Data Evolution自动指令数据演化

pipline 分成3个部分:

  • 1)指令进化
  • 2)响应生成
  • 3)消除进化,即过滤无法进化的指令。

指令进化instruction evolution

作者发现LLM可以使用特定的提示使给定的指令变得更加复杂和困难。此外,它们可以生成同样复杂但完全不同的全新指令

利用这一发现,我们可以迭代地进化一个初始指令数据集,提高难度水平,扩大其丰富性和多样性。

1.用给定的初始指令数据集D(0)初始化指令池。

2.在每个进化时期,从前一个时期升级的指令从池中取出。

3.然后利用指令进化器instruction evolver来进化每条获取到的指令,并利用指令消除器instruction eliminator来检查是否存在进化失败的指令。

  • 成功进化的指令被添加到池中
  • 不成功的指令被放回原处,希望在下一个进化时期成功升级它们。

指令进化器instruction evolver

指令进化器是一种LLM,它使用提示来进化指令,有两种类型:深度进化和广度进化

深度进化

深度进化通过五种类型的提示来增强指令的复杂性和难度:

  • 添加约束
  • 使得深度化
  • 使得具体化
  • 增加推理步骤
  • 使输入变得复杂化。

举例子:

  • 这是添加约束add contraints:
I want you act as a Prompt Rewriter.
Your objective is to rewrite a given prompt into a more complex version to make those famous AI systems (e.g., ChatGPT and GPT4) a bit harder to handle.
But the rewritten prompt must be reasonable and must be understood and responded by humans.
Your rewriting cannot omit the non-text parts such as the table and code in #Given Prompt#:. Also, please do not omit the input in #Given Prompt#.
You SHOULD complicate the given prompt using the following method:
Please add one more constraints/requirements into #Given Prompt#
You should try your best not to make the #Rewritten Prompt# become verbose, #Rewritten Prompt# can only add 10 to 20 words into #Given Prompt#.
‘#Given Prompt#’, ‘#Rewritten Prompt#’, ‘given prompt’ and ‘rewritten prompt’ are not allowed to appear in #Rewritten Prompt#
#Given Prompt#:
<Here is instruction.>
#Rewritten Prompt#:
  • 这是Deepening Prompt深化:
I want you act as a Prompt Rewriter.
Your objective is to rewrite a given prompt into a more complex version to make those famous AI systems (e.g., ChatGPT and GPT4) a bit harder to handle.
But the rewritten prompt must be reasonable and must be understood and responded by humans.
Your rewriting cannot omit the non-text parts such as the table and code in #Given Prompt#:. Also, please do not omit the input in #Given Prompt#.
You SHOULD complicate the given prompt using the following method:
If #Given Prompt# contains inquiries about certain issues, the depth and breadth of the inquiry can be increased. or
You should try your best not to make the #Rewritten Prompt# become verbose, #Rewritten Prompt# can only add 10 to 20 words into #Given Prompt#.
‘#Given Prompt#’, ‘#Rewritten Prompt#’, ‘given prompt’ and ‘rewritten prompt’ are not allowed to appear in #Rewritten Prompt#
#Given Prompt#:
<Here is instruction.>
#Rewritten Prompt#:
  • 这是具体化Concretizing Pormpt:
I want you act as a Prompt Rewriter.
Your objective is to rewrite a given prompt into a more complex version to make those famous AI systems (e.g., ChatGPT and GPT4) a bit harder to handle.
But the rewritten prompt must be reasonable and must be understood and responded by humans.
Your rewriting cannot omit the non-text parts such as the table and code in #Given Prompt#:. Also, please do not omit the input in #Given Prompt#.
You SHOULD complicate the given prompt using the following method:
Please replace general concepts with more specific concepts. or
You should try your best not to make the #Rewritten Prompt# become verbose, #Rewritten Prompt# can only add 10 to 20 words into #Given Prompt#.
‘#Given Prompt#’, ‘#Rewritten Prompt#’, ‘given prompt’ and ‘rewritten prompt’ are not allowed to appear in #Rewritten Prompt#
#Given Prompt#:
<Here is instruction.>
#Rewritten Prompt#:

  • Increased Reasoning Steps Prompt:
I want you act as a Prompt Rewriter.
Your objective is to rewrite a given prompt into a more complex version to make those famous AI systems (e.g., ChatGPT and GPT4) a bit harder to handle.
But the rewritten prompt must be reasonable and must be understood and responded by humans.
Your rewriting cannot omit the non-text parts such as the table and code in #Given Prompt#:. Also, please do not omit the input in #Given Prompt#.
You SHOULD complicate the given prompt using the following method:
If #Given Prompt# can be solved with just a few simple thinking processes, you can rewrite it to explicitly request multiple-step reasoning.
You should try your best not to make the #Rewritten Prompt# become verbose, #Rewritten Prompt# can only add 10 to 20 words into #Given Prompt#.
‘#Given Prompt#’, ‘#Rewritten Prompt#’, ‘given prompt’ and ‘rewritten prompt’ are not allowed to appear in #Rewritten Prompt#
#Given Prompt#:
<Here is instruction.>
#Rewritten Prompt#:
  • 这是complicating input:
I want you act as a Prompt Rewriter.
Your objective is to rewrite a given prompt into a more complex version to make those famous AI systems (e.g., ChatGPT and GPT4) a bit harder to handle.
But the rewritten prompt must be reasonable and must be understood and responded by humans.
You must add [XML data] format data as input data in [Rewritten Prompt]
#Given Prompt#:
<Here is Demonstration instruction 1.>
#Rewritten Prompt#:
<Here is Demonstration Example 1.>
... N -1 Examples ...
I want you act as a Prompt Rewriter.
Your objective is to rewrite a given prompt into a more complex version to make those famous AI systems (e.g., ChatGPT and GPT4) a bit harder to handle.
But the rewritten prompt must be reasonable and must be understood and responded by humans.
You must add [#Given Dataformat#] format data as input data, add [#Given Dataformat#] code as input code in [Rewritten Prompt]
Rewrite prompt must be a question style instruction
#Given Prompt#:
<Here is instruction.>
#Rewrite prompt must be a question style instruction Rewritten Prompt(MUST contain a specific JSON data as input#:

广度进化

I want you act as a Prompt Creator.
Your goal is to draw inspiration from the #Given Prompt# to create a brand new prompt.
This new prompt should belong to the same domain as the #Given Prompt# but be even more rare.
The LENGTH and difficulty level of the #Created Prompt# should be similar to that of the #Given Prompt#. The #Created Prompt# must be reasonable and must be understood and responded by humans.
‘#Given Prompt#’, ‘#Created Prompt#’, ‘given prompt’ and ‘created prompt’ are not allowed to appear in #Created Prompt#.
#Given Prompt#:
<Here is instruction.>
#Created Prompt#:

生成response

  • 使用与进化相同的LLM来为进化的指令生成相应的响应。生成提示符是" <Here is instruction.> "。

消除进化

有以下4种情况归类为失败:

  • 指令进化失败;与原始指令相比,进化后的指令没有提供任何信息增益。我们使用ChatGPT进行此确定。
  • 进化的指令使得LLM很难产生响应。我们发现,当生成的响应包含“sorry”并且长度相对较短(即少于80个单词)时,它通常表明LLM努力响应进化的指令。所以我们可以用这个规则来做判断。
  • LLM生成的响应只包含标点和停止词。
  • 进化指令显然从进化提示中复制了一些单词,如“给定提示”、“重写提示”、“#重写提示#”等。

baseline

  • ChatGPT
    • OpenAI
    • AI bot
    • 基于GPT-3.5 or GPT-4
  • Alapaca
    • 开源模型,基于LLaMA
    • 斯坦福大学Standford University
  • Vicuna
    • 开源的chat bot
    • 基于LLaMA

参考文献

WizardLM论文:https://arxiv.org/abs/2304.12244

DB-GPT项目:https://github.com/eosphoros-ai/DB-GPT/blob/main/README.zh.md

DB-GPT-Hub项目:GitHub - eosphoros-ai/DB-GPT-Hub: A repository that contains models, datasets, and fine-tuning techniques for DB-GPT, with the purpose of enhancing model performance, especially in Text-to-SQL.

http://www.yayakq.cn/news/45772/

相关文章:

  • 华强北做电子网站网站开发知识版权
  • 建筑工程网站模板手机网站快速建站
  • 杭州网络营销网站建立网站需要多少钱 纠正错误湖南岚鸿
  • 佛山公益网站制作武功网站建设
  • 网站内容建设策略网站制作完成后
  • 咸宁公司网站建设做字画的网站
  • 企业网站开发报价单网站如何做关键词排名
  • 酒店网站素材阿里网站建设费用
  • 常宁城乡建设局网站查询安仁网络推广软件定制开发
  • 深圳市南山区做网站的小公司WordPress登录页提示
  • 注册号域名后 怎么建设网站国内营销网络途径困难
  • 吉安网站制作企业seo外包公司
  • 建设部网站在哪里看受理网站建设服务商城
  • 现在网站如何做优化搜狐视频
  • 效果好企业营销型网站建设南昌p2p网站专业建设
  • 建设银行手机外汇网站西部数码网站管理助手 提权
  • 濮阳网站建设价格全球热点app下载
  • 开州快速建网站wordpress 增加内存
  • 嘉兴搜索引擎网站推广wordpress有趣的插件
  • 深圳低价网站建设wordpress特殊插件
  • 网站导航栏兼容性怎么样网站开源
  • 个人网站如何优化关键词做网站公司哪好
  • 国外网站开发网站排名软件推荐
  • 网站空间绑定域名怎么进入wordpress后台改
  • 北京市建设教育协会网站首页科技网站欣赏
  • 电器网站建设策划书中国建设工程信息网官网查询系统
  • 网站安全建设总结怎么创造网站
  • 飞鸽网站建设产品创新设计案例
  • 福州网站怎么做有没有返利网站做京东的
  • 视频网站建设类图怎么用手机制作手机网站