当前位置: 首页 > news >正文

设计型网站案例没建网站 备案

设计型网站案例,没建网站 备案,聊城做手机网站建设,信阳做网站推广数据的截图,数据的说明: # 字段 数据类型 # 城市 string # 名称 string # 星级 string # 评分 float # 价格 float # 销量 int # 省/市/区 string # 坐标 string # 简介 string # 是否免费 bool # 具体地址 string拿到数据…

数据的截图,数据的说明:

# 字段    数据类型
# 城市    string
# 名称    string
# 星级    string
# 评分    float
# 价格    float
# 销量    int
# 省/市/区 string
# 坐标    string
# 简介    string
# 是否免费  bool
# 具体地址  string

拿到数据第一步我们先导入数据,查看一下数据的分布,类型等

import pandas as pd
import numpy as np
import matplotlib.pyplot as pltdata = pd.read_excel("旅游景点.xlsx")
pd.set_option("display.max_columns",100)
# print(data.head())print(data.info())
print(data.isnull().sum())

接下来我们来看具体的问题:

# 问题(先大概分析一下)
# 1、全国景点分布 (我们分析城市的分布即可)
# 2、国民出游分析 (我们可以分析评分,城市,销量之间的关系 )
# 3、景区价格分析 (我们分析价格因素)
# 问题看完之后,我们开始对数据进行预处理
# 由于星级对我们问题的分析帮助很大,所以我们无法用删除,或者众数等方式填充,因此我们用无来填充,将其划分为一个新的类别
data["星级"] = data["星级"].fillna("无")
print(data["星级"].isnull().sum())
至于简介和地址,缺失数据无关紧要,这里我们可以选择用无来填充,也可以用删除来处理,为了不破坏数据的完整性,这里我选择用无来填充
data = data.fillna("无")
# print(data.isnull().sum())
# 这样我们的数据就没有了缺失值
# print(data.info())
# 1、全国景点分布 (我们分析城市的分布即可)
scenic = data['城市'].value_counts().sort_values(ascending=False)
plt.figure()
scenic.plot(kind='bar',stacked=False,colormap='viridis',figsize=(10,6))
plt.title("各个城市景点数量分布图")
plt.xlabel('城市')
plt.ylabel('景点个数')
# plt.show()
# 2、国民出游分析 (我们可以分析评分,城市,销量之间的关系 )
# data['销量'] = data['销量'].astype(int)   这种转换类型的方法,如果有无法转换的值,则无法转换
data['评分'] = pd.to_numeric(data['评分'], errors='coerce')
data['销量'] = pd.to_numeric(data['销量'],errors='coerce')
data['价格'] = pd.to_numeric(data['价格'],errors='coerce')city_sales = data.groupby('城市')['销量'].sum()
city_sales = city_sales.sort_values(ascending=False)plt.figure()
city_sales.plot(kind='bar',stacked=True,colormap='plasma',figsize=(10,6))
plt.title('各个城市景点门票销量')
plt.xlabel('城市')
plt.ylabel('销量')
# 从销量可以看出北京,上海,江苏,四川,陕西,广东的销量较高,因此,我们着重分析这六个地方的景点评分
shanghai = data[data['城市'].str.contains('上海')]
beijing = data[data['城市'].str.contains('北京')]
jiangsu = data[data['城市'].str.contains('江苏')]
sichuan = data[data['城市'].str.contains('四川')]
shanxi = data[data['城市'].str.contains('陕西')]
guangdong = data[data['城市'].str.contains('广东')]shanghai_group = shanghai.groupby('名称')['销量'].sum().reset_index()
beijing_group = beijing.groupby('名称')['销量'].sum().reset_index()
jiangsu_group = jiangsu.groupby('名称')['销量'].sum().reset_index()
sichuan_group = sichuan.groupby('名称')['销量'].sum().reset_index()
shanxi_group = shanxi.groupby('名称')['销量'].sum().reset_index()
guangdong_group = guangdong.groupby('名称')['销量'].sum().reset_index()shanghai_sort = shanghai_group.merge(shanghai[['名称','评分']].drop_duplicates(),on='名称').sort_values(by='销量', ascending=False).head(10)
beijing_sort = beijing_group.merge(beijing[['名称','评分']].drop_duplicates(),on='名称').sort_values(by='销量', ascending=False).head(10)
jiangsu_sort = jiangsu_group.merge(jiangsu[['名称','评分']].drop_duplicates(),on='名称').sort_values(by='销量', ascending=False).head(10)
sichuan_sort = sichuan_group.merge(sichuan[['名称','评分']].drop_duplicates(),on='名称').sort_values(by='销量', ascending=False).head(10)
shanxi_sort = shanxi_group.merge(shanxi[['名称','评分']].drop_duplicates(),on='名称').sort_values(by='销量', ascending=False).head(10)
guangdong_sort = guangdong_group.merge(guangdong[['名称','评分']].drop_duplicates(),on='名称').sort_values(by='销量', ascending=False).head(10)shanghai_sort.reset_index(drop=True,inplace=True)
beijing_sort.reset_index(drop=True,inplace=True)
jiangsu_sort.reset_index(drop=True,inplace=True)
sichuan_sort.reset_index(drop=True,inplace=True)
shanxi_sort.reset_index(drop=True,inplace=True)
guangdong_sort.reset_index(drop=True,inplace=True)plt.figure()
plt.bar(shanghai_sort['名称'],shanghai_sort['销量'])
for i, v in enumerate(shanghai_sort['评分']):plt.text(i, shanghai_sort['销量'][i] + 0.2, str(v), ha='center')plt.xlabel('名称')
plt.ylabel('销量')
plt.title('上海市销量排名前十的景点')
plt.xticks(rotation=45)plt.figure()
plt.bar(beijing_sort['名称'], beijing_sort['销量'])
for i, v in enumerate(beijing_sort['评分']):plt.text(i, beijing_sort['销量'][i] + 0.2, str(v), ha='center')plt.xlabel('名称')
plt.ylabel('销量')
plt.title('北京市销量排名前十的景点')
plt.xticks(rotation=45)plt.figure()
plt.bar(jiangsu_sort['名称'], jiangsu_sort['销量'])
for i, v in enumerate(jiangsu_sort['评分']):plt.text(i, jiangsu_sort['销量'][i] + 0.2, str(v), ha='center')plt.xlabel('名称')
plt.ylabel('销量')
plt.title('江苏省销量排名前十的景点')
plt.xticks(rotation='vertical')plt.figure()
plt.bar(sichuan_sort['名称'], sichuan_sort['销量'])
for i, v in enumerate(sichuan_sort['评分']):plt.text(i, sichuan_sort['销量'][i] + 0.2, str(v), ha='center')plt.xlabel('名称')
plt.ylabel('销量')
plt.title('四川省销量排名前十的景点')
plt.xticks(rotation=45)plt.figure()
plt.bar(shanxi_sort['名称'], shanxi_sort['销量'])
for i, v in enumerate(shanxi_sort['评分']):plt.text(i, shanxi_sort['销量'][i] + 0.2, str(v), ha='center')plt.xlabel('名称')
plt.ylabel('销量')
plt.title('陕西省销量排名前十的景点')
plt.xticks(rotation=45)plt.figure(figsize=(10,6))
plt.bar(guangdong_sort['名称'], guangdong_sort['销量'])
for i, v in enumerate(guangdong_sort['评分']):plt.text(i, guangdong_sort['销量'][i] + 0.2, str(v), ha='center')plt.xlabel('名称')
plt.ylabel('销量')
plt.title('广东省销量排名前十的景点')
plt.xticks(rotation=45)

由此,我们结合这几个分析来回答这几个问题:

http://www.yayakq.cn/news/38281/

相关文章:

  • 宿州网站推广空间破解网站
  • 做网站用微软雅黑字体被告侵权国投集团网站开发
  • 做品牌网站公司创新的南昌网站建设
  • 响应式网站的优势小说主题+wordpress
  • 丰台网站建设推广八年级信息上册如何做网站
  • 网站备案填写要求吗网页生成视频
  • 潍坊网站搜索引擎优化重庆网站设计案例
  • 电子商务网站建设项目范围如何在网上推广自己的公司
  • php电子商务网站源码云网站 深圳
  • 沈阳思路网站制作wordpress主题 大
  • DW做旅游网站毕业设计唐山seo排名外包
  • 东安网站建设做 爱 网站小视频在线观看
  • 合肥官方网站优化费用99企业邮箱888
  • 学习网站大全阿里云网站建设方案书中山市
  • wordpress 付费模版关键词优化排名软件s
  • 网站建设开发计划acg的wordpress主题
  • 忻州网站制作网络推广文案
  • 团队氛围建设 网站网页设计参考板式
  • 黄骅网站建设哈尔滨网站推广优化公司
  • 南海建设工程交易中心网站中国建设教育协会官网证书查询
  • 彩票网站怎么做赚钱wordpress登陆phpadmin
  • 洛阳网站建设报价制作网站需要怎么做的
  • 计算机毕业设计作品网站提升学历图片素材
  • 网站建设asp编程织梦 移动网站
  • 环保设计院的网站建设什么是网站的权重
  • 征婚网站开发天津都有哪些制作网站
  • 北京网站建设厂家wordpress 改中文
  • 小程序企业网站源码应城网站建设
  • 建站行业获客河北邯郸市简介
  • 服装行业做推广网站做网站百度