当前位置: 首页 > news >正文

制定网站建设方案外链查询

制定网站建设方案,外链查询,php网站开发常用框架,三维动画制作很多算法比赛经常会遇到不同的物体产生同含义的时间序列信息,比如不同位置的时间序列信息,风力发电、充电桩用电。经常会遇到该如此场景,对所有数据做统一处理喂给模型,模型很难学到区分信息,因此设计如果对不同位置的…

       很多算法比赛经常会遇到不同的物体产生同含义的时间序列信息,比如不同位置的时间序列信息,风力发电、充电桩用电。经常会遇到该如此场景,对所有数据做统一处理喂给模型,模型很难学到区分信息,因此设计如果对不同位置的装置做嵌入操作,这也是本文书写的主要目的之一,如果对不同位置装置的时序数据做模型呢?

      RGU: 循环神经网络模块,经常用于处理时序数据。

     Embedding : 是 PyTorch 中的一个类,用于将离散的整数序列映射为连续的向量表示。

使用下面比赛的数据作为一个处理的DEMO:

 2023中国华录杯数据湖算法大赛

import package

import numpy as np
import pandas as pd
import torch
import torch.nn as nn
#import tushare as ts
from sklearn.preprocessing import StandardScaler, MinMaxScaler
from sklearn.model_selection import train_test_split
from torch.utils.data import TensorDataset
from tqdm import tqdm
from torch.utils.data import Dataset, DataLoaderfrom sklearn.preprocessing import LabelEncoderimport matplotlib.pyplot as plt
import tqdm
import sys
import os
import gc
import argparse
import warningswarnings.filterwarnings('ignore')

load data

class Config():#data_path = '../data/data1/train/power.csv'timestep = 14  # 时间步长,就是利用多少时间窗口batch_size = 32  # 批次大小feature_size = 1  # 每个步长对应的特征数量,这里只使用1维,每天的风速hidden_size = 56  # 隐层大小output_size = 1  # 由于是单输出任务,最终输出层大小为1,预测未来1天风速num_layers = 1  # lstm的层数epochs = 10 # 迭代轮数best_loss = 0 # 记录损失learning_rate = 0.00003 # 学习率model_name = 'lstm' # 模型名称save_path = './{}.pth'.format(model_name) # 最优模型保存路径
config = Config()train_df = pd.read_csv('../初赛数据/phase1_train.csv')
test_df = pd.read_csv('../初赛数据/phase1_test.csv')labelEncoder = LabelEncoder()
train_df['line_label'] = labelEncoder.fit_transform(train_df['line'])
#labelEncoder.transform(test_df['line'])train_df = train_df.sort_values(["line",'date']).reset_index(drop=True)train_df.line.unique()
array(['L01', 'L02', 'L03', 'L04', 'L05', 'L06', 'L08', 'L09', 'L10'],dtype=object)

使用前面14天预测未来第七天:

1,2,3,4,5,6,7,8,9,10,11,12,13,14 -》14+7

【1,2,3,4,5,6,7,8,9,10,11,12,13,14】+1  -》 14+7+1

。。。。。

#train_df.head()
his_pow_feats = []
for i in range(config.timestep):train_df[f'shift_{7+i}'] = train_df.groupby("line_label")['passenger_flow'].shift(7+i)his_pow_feats.append(f'shift_{7+i}')
train_df_drop_na = train_df[train_df[his_pow_feats].isna().sum(axis=1)==0]class MyDataSet(Dataset):def __init__(self,train_df_drop_na,his_pow_feats):"""train_df_drop_na"""self.train_df = train_df_drop_na.reset_index(drop=True)def __len__(self):return len(self.train_df)def __getitem__(self,item):label = self.train_df.loc[item,'passenger_flow']id_encoder = self.train_df.loc[item,'line_label']his_feats_list = self.train_df.loc[item,his_pow_feats].values.tolist()return {"input_ids":torch.tensor(id_encoder,dtype=torch.long),"his_feats":torch.as_tensor(his_feats_list ,dtype=torch.float32).unsqueeze(-1),"labels":torch.tensor(label,dtype=torch.float32)}RANDOM_SEED = 1023
df_train, df_test = train_test_split(train_df_drop_na, test_size=0.2, random_state=RANDOM_SEED)
df_val, df_test = train_test_split(df_test, test_size=0.5, random_state=RANDOM_SEED)
df_train.shape, df_val.shape, df_test.shapedef create_data_loader(train_df_drop_na,his_pow_feats,batch_size=32):ds = MyDataSet(train_df_drop_na,his_pow_feats)return DataLoader(ds,batch_size=batch_size)
BATCH_SIZE = 32
train_data_loader = create_data_loader(df_train,his_pow_feats=his_pow_feats,batch_size=BATCH_SIZE)
val_data_loader = create_data_loader(df_val, his_pow_feats=his_pow_feats,batch_size=BATCH_SIZE)
test_data_loader = create_data_loader(df_test,his_pow_feats=his_pow_feats,batch_size=BATCH_SIZE)#train_df[cols]
# 7.定义LSTM网络
class GRUModel(nn.Module):def __init__(self, feature_size, hidden_size, num_layers, output_size):super(GRUModel, self).__init__()self.hidden_size = hidden_size  # 隐层大小self.num_layers = num_layers  # lstm层数# feature_size为特征维度,就是每个时间点对应的特征数量,这里为1self.gru = nn.GRU(feature_size, hidden_size, num_layers, batch_first=True,bidirectional=True)self.layer_norm = nn.LayerNorm(hidden_size*2)self.fc = nn.Linear(hidden_size*2+2, output_size)self.embedding = nn.Embedding(9, 2)def forward(self, x,id_label, hidden=None):#print(x.shape)batch_size = x.shape[0] # 获取批次大小 batch, time_stamp , feat_size# 初始化隐层状态h_0 = x.data.new(2*self.num_layers, batch_size, self.hidden_size).fill_(0).float()if hidden is not None:h_0 = hidden#print(h_0.size)# GRU 运算output, hidden = self.gru(x,h_0)output = self.layer_norm(output)last_output = output[:, -1, :]#print('output',last_output.shape)embed = self.embedding(id_label)#print("embed",embed.shape)#print('output',output.shape)concatenated = torch.cat((embed, last_output), dim=1)#print(concatenated.shape)# 全连接层output = self.fc(concatenated)  # 形状为batch_size * timestep, 1#print(output.shape)# 我们只需要返回最后一个时间片的数据即可return output
model = GRUModel(config.feature_size, config.hidden_size, config.num_layers, config.output_size)  # 定义LSTM网络loss_function = nn.L1Loss()  # 定义损失函数
# class MAPELoss(nn.Module):
#     def __init__(self):
#         super(MAPELoss, self).__init__()#     def forward(self, y_pred, y_true):
#         epsilon = 1e-8  # 用于避免除以零的小常数
#         absolute_error = torch.abs(y_true - y_pred)
#         relative_error = absolute_error / (torch.abs(y_true) + epsilon)
#         mape = torch.mean(relative_error) * 100
#         return mape
# loss_function = MAPELoss()  # 定义损失函数optimizer = torch.optim.AdamW(model.parameters(), lr=0.01)  # 定义优化器
from tqdm import tqdm# 8.模型训练
for epoch in range(500):model.train()running_loss = 0train_bar = tqdm(train_data_loader)  # 形成进度条for data in train_bar:x_train, y_train = data['his_feats'], data['labels']  # 解包迭代器中的X和Yoptimizer.zero_grad()y_train_pred = model(x_train,data['input_ids'])loss = loss_function(y_train_pred, y_train.reshape(-1, 1))loss.backward()optimizer.step()running_loss += loss.item()train_bar.desc = "train epoch[{}/{}] loss:{:.3f}".format(epoch + 1,config.epochs,loss)# 模型验证model.eval()test_loss = 0with torch.no_grad():test_bar = tqdm(val_data_loader)for data in test_bar:x_test, y_test = data['his_feats'], data['labels']y_test_pred = model(x_test, data['input_ids'])test_loss = loss_function(y_test_pred, y_test.reshape(-1, 1))if test_loss < config.best_loss:config.best_loss = test_losstorch.save(model.state_dict(), save_path)print('Finished Training')

http://www.yayakq.cn/news/389235/

相关文章:

  • 汽车专业网站浙江城乡建设网站证件查询
  • 企业站seo外包电话开发网站建设话术
  • 郑州网站开发与建设商业机构的网址
  • 酒庄企业网站电脑网站 源码
  • 甘肃网站备案审核中国加盟网
  • 高大上设计网站欣赏厦门网站建设案例
  • 可以做行程的网站做网站的公司跑了
  • 公司网站建设需要哪些方面wordpress文章名加后缀
  • 网站开发语言查看网络培训学校
  • php网站后台怎么进怎么做一个个人网站
  • 做网站怎么赚钱 做网站怎么赚钱站酷设计网站官网入口免费
  • 四举措加强网站建设设计制作的一般流程是明确问题
  • 营销网站大全中国建设银行上海分行信息网站
  • 网站seo分析案例wordpress企业网站模板
  • 网站开发毕业设计书淘宝店铺代运营一般怎么收费
  • 网站建设 微信营销怎样做百度口碑推广自己的网站
  • 做网站需要具备什么项目建设我先行凝心聚力促发展
  • 士兵突击网站怎么做wordpress 的应用
  • 多网站管理中午网站做google广告好吗
  • 免费做网站的动态可视化wps图表制作
  • 做网站一般哪里找网站开发弹窗制作
  • 广州天河建网站做卷闸门网站有用吗
  • 网站文章后台写完前台不显示网站开发哪里接业务
  • 广东网站设计工具犀牛云 做网站
  • 网站推广seo软件济宁网站建设 帮站
  • 中铁建设工程项目公示网站企业网站搭建新感觉建站
  • 均安网站制作杭州互联网企业有哪些
  • ppth5怎么制作搜索引擎关键词怎么优化
  • 网站佣金怎么做凭证英文网站seo 谷歌
  • 什么网站可以做问卷调查免费建站的网站有哪些