当前位置: 首页 > news >正文

外包建站的公司怎么做seo做软件开发

外包建站的公司怎么做seo,做软件开发,安徽省建设厅官方网站进不去,城乡建设部网站首页甲级简介 本文章介绍了通过读取 csv 或 Excel 文件内容,将其转换为折线图或柱状图的方法,并写入 html 文件中。 目录 1. 读取CSV文件 1.1. 生成折线图 1.1.1. 简单生成图表 1.1.2. 设置折线图格式 1.2. 生成柱状图 1.2.1. 简单生成图表 1.2.2. 设置柱…

简介

本文章介绍了通过读取 csv 或 Excel 文件内容,将其转换为折线图或柱状图的方法,并写入 html 文件中。

目录

1. 读取CSV文件

1.1. 生成折线图

1.1.1. 简单生成图表

1.1.2. 设置折线图格式

1.2. 生成柱状图

1.2.1. 简单生成图表

1.2.2. 设置柱状图格式

2. 读取Excel文件

2.1. 生成折线图

2.1.1. 简单生成图表

2.1.2. 设置折线图格式

2.2. 生成柱状图

2.2.1. 简单生成图表

2.2.2. 设置柱状图格式

3. 将生成的折线图写入html文件

3.1. 直接写入图片

3.2. 添加文字描述


1. 读取CSV文件

1.1. 生成折线图

1.1.1. 简单生成图表

代码如下

import pandas
import matplotlib.pyplot as plt# 设置csv文件路径
file = r'E:\test.csv'# 防止中文乱码
plt.rcParams['font.sans-serif'] = ['Microsoft YaHei']# 通过pandas读取文件内容
df = pandas.read_csv(file)
# 将文件第一行设置为序列名称
series_names = df .columns# 将文件数据绘制为折线图
plt.plot(df)
plt.legend(series_names)  #设置序列名称
plt.xlabel('横轴标题')     #设置横坐标名称
plt.ylabel('纵轴标题')     #设置纵坐标名称
plt.title('图表标题')      #设置图表标题# 将绘制的图表显示在屏幕上
plt.show()# 保存图表为png文件
# plt.savefig('filename.png')

绘制结果如下(csv文件中含有3列数据)

                                         

1.1.2. 设置折线图格式

代码如下(在1.1.1目录的代码基础上增加了:图片长宽、标记样式、网格线、横纵轴参考线)

import pandas
import matplotlib.pyplot as plt# 设置csv文件路径
file = r'E:\test.csv'# 防止中文乱码
plt.rcParams['font.sans-serif'] = ['Microsoft YaHei']# 通过pandas读取文件内容
df = pandas.read_csv(file)
# 将文件第一行设置为序列名称
series_names = df .columns# 定义图表大小(长15,高8),必须放在plt.plot前面
plt.figure(figsize=(15,8))# 将文件数据绘制为折线图
plt.plot(df, marker='o', markersize=3)  #marker设置标记样式和大小
plt.xlabel('横轴标题')   #设置横坐标名称
plt.ylabel('纵轴标题')   #设置纵坐标名称
plt.title('图表标题')    #设置图表标题
plt.grid()              #显示网格线
plt.legend(series_names)  #设置序列名称
plt.axhline(y=2, color='r', linestyle='--')   #在y轴上添加横向参考线。
plt.axvline(x=1, color='r', linestyle='--')   #在x轴上添加纵向参考线。# 将绘制的图表显示在屏幕上
plt.show()# 保存图表为png文件
# plt.savefig('filename.png')

绘制结果如下

                                         

1.2. 生成柱状图

1.2.1. 简单生成图表

代码如下

import pandas as pd
import matplotlib.pyplot as plt# 从CSV文件读取数据并指定第一行为列名
data = pd.read_csv(r'E:\test.csv', header=0)# 防止中文乱码
plt.rcParams['font.sans-serif'] = ['Microsoft YaHei']# 获取列名和对应的值
columns = data.columns
values = data.iloc[0].values# 绘制柱状图
plt.bar(columns, values)
plt.xlabel('横轴标题')
plt.ylabel('纵轴标题')
plt.title('图表标题')# 将绘制的图表显示在屏幕上
plt.show()# 保存图表为png文件
# plt.savefig('filename.png')

绘制结果如下

                                         

1.2.2. 设置柱状图格式

颜色代码

'b' 表示蓝色
'g' 表示绿色
'r' 表示红色
'c' 表示青色
'm' 表示品红色
'y' 表示黄色
'k' 表示黑色
'w' 表示白色。

代码如下(在1.2.1目录的代码基础上增加了:图片长宽、柱子宽度/颜色、边框宽度/颜色)

import pandas as pd
import matplotlib.pyplot as plt# 从CSV文件读取数据并指定第一行为列名
data = pd.read_csv(r'E:\test.csv', header=0)# 防止中文乱码
plt.rcParams['font.sans-serif'] = ['Microsoft YaHei']# 定义图表大小(长15,高8),必须放在plt.plot前面
plt.figure(figsize=(15,8))# 获取列名和对应的值
columns = data.columns
values = data.iloc[0].values# 绘制柱状图
plt.bar(columns, values,    #横轴坐标color='y',          #设置柱子颜色(黄色,见颜色代码)width = 0.8,        #设置柱子宽度edgecolor='k',      #设置柱子边框颜色(黑色,见颜色代码)linewidth=2         #设置柱子边框宽度
)
plt.xlabel('横轴标题')
plt.ylabel('纵轴标题')
plt.title('图表标题')# 将绘制的图表显示在屏幕上
plt.show()# 保存图表为png文件
# plt.savefig('filename.png')

绘制结果如下

                                         

                                         

2. 读取Excel文件

2.1. 生成折线图

2.1.1. 简单生成图表

代码如下

import pandas
import matplotlib.pyplot as plt# 防止乱码
plt.rcParams['font.sans-serif'] = ['Microsoft YaHei']# 读取Excel文件内容
df = pandas.read_excel(r'E:\test.xlsx', sheet_name='Sheet1')
column_names = df.columns.tolist()  #获取第1行名称
excel_rows = df.shape[0]            #获取行数# 设置横轴数据,可以在Excel中获取,这里直接将行数从1开始遍历到末尾
x = [i for i in range(1, excel_rows+1)]
# 遍历第一行的列名
for col_name in column_names:# 通过列名提取画图的数据y = df[col_name].to_numpy()# 画图,执行横轴坐标,将线条图例名设置为第一行的列名plt.plot(x, y, label=col_name)# 设置属性
plt.legend()  # 显示图例标题
plt.xlabel('横坐标名称')
plt.ylabel('纵坐标名称')
plt.title('折线图标题')# plt.savefig('./filename.jpg')  # 保存图片
plt.show()  # 查看图片

绘制结果如下 

                                         

2.1.2. 设置折线图格式

代码如下(在2.1.1目录的代码基础上增加了:图片长宽、标记样式、网格线、横纵轴参考线)

import pandas
import matplotlib.pyplot as plt# 防止乱码
plt.rcParams['font.sans-serif'] = ['Microsoft YaHei']# 读取Excel文件内容,如果读取csv文件,则使用pandas.read_csv
df = pandas.read_excel(r'E:\test.xlsx', sheet_name='Sheet1')
column_names = df.columns.tolist()  #读取第1行名称
excel_rows = df.shape[0]             #读取行数# 定义图表大小(长15,高8),必须放在plt.plot前面
plt.figure(figsize=(15,8))# 设置横轴数据,可以在Excel中获取,这里直接将行数从1开始遍历到末尾
x = [i for i in range(1, excel_rows+1)]
# 遍历第一行的列名
for col_name in column_names:# 通过列名提取画图的数据y = df[col_name].to_numpy()# 画图,执行横轴坐标,将线条图例名设置为第一行的列名plt.plot(x, y, label=col_name, marker='o', markersize=3)    #marker设置标记样式和大小# 设置属性
plt.legend()  # 显示图例标题
plt.xlabel('横坐标名称')
plt.ylabel('纵坐标名称')
plt.title('折线图标题')
plt.grid()              #显示网格线
plt.axhline(y=2, color='r', linestyle='--')   #在y轴上添加横向参考线
plt.axvline(x=1, color='r', linestyle='--')   #在x轴上添加纵向参考线# plt.savefig('./aa.jpg')  # 保存图片
plt.show()  # 查看图片

绘制结果如下

                                         

2.2. 生成柱状图

2.2.1. 简单生成图表

代码如下(单行数据)

import pandas
import matplotlib.pyplot as plt# 防止乱码
plt.rcParams['font.sans-serif'] = ['Microsoft YaHei']# 读取Excel文件内容
df = pandas.read_excel(r'E:\test.xlsx', sheet_name='Sheet1')# 获取第一行的名称
column_names = df.columns.tolist()# 去除第一行,并转置数据
data = df.T# 创建柱状图,指定绘制的类型为柱状图(line:折线图(默认),bar:柱状图,barh:水平柱状图,hist:直方图,box:箱线图,kde:核密度估计图,density:密度图,area:面积图,scatter:散点图,hexbin:Hexbin 图(用于显示二维数据的分布情况))
data.plot(kind='bar')# 设置柱子的名称(rotation旋转柱子标题的度数)
plt.xticks(range(len(column_names)), column_names, rotation=0)# 添加标题和坐标轴标签
plt.title('图表标题')
plt.xlabel('横轴标题')
plt.ylabel('纵轴标题')# 显示柱状图
plt.show()

绘制结果如下

                                          

多行数据需要增加修改图例名称的方法,默认从0开始,设置为从1开始。每个图例表示行数,比例1:第一行;2:第二行...

import pandas
import matplotlib.pyplot as plt# 防止乱码
plt.rcParams['font.sans-serif'] = ['Microsoft YaHei']# 读取Excel文件内容
df = pandas.read_excel(r'E:\test.xlsx', sheet_name='Sheet2')# 获取第一行的名称
column_names = df.columns.tolist()# 去除第一行,并转置数据
data = df.T# 创建柱状图,指定绘制的类型为柱状图(line:折线图(默认),bar:柱状图,barh:水平柱状图,hist:直方图,box:箱线图,kde:核密度估计图,density:密度图,area:面积图,scatter:散点图,hexbin:Hexbin 图(用于显示二维数据的分布情况))
data.plot(kind='bar')# 设置柱子的名称(rotation旋转柱子标题的度数)
plt.xticks(range(len(column_names)), column_names, rotation=0)# 添加标题和坐标轴标签
plt.title('图表标题')
plt.xlabel('横轴标题')
plt.ylabel('纵轴标题')# 修改图例名称(从1开始,1表示第1行数据...)
handles, labels = plt.gca().get_legend_handles_labels()
labels = [int(label)+1 for label in labels]
plt.legend(handles, labels)# 显示柱状图
plt.show()

                                          

2.2.2. 设置柱状图格式

颜色代码

'b' 表示蓝色
'g' 表示绿色
'r' 表示红色
'c' 表示青色
'm' 表示品红色
'y' 表示黄色
'k' 表示黑色
'w' 表示白色。

代码如下(在2.2.1目录的代码基础上增加了:图片长宽、柱子宽度/颜色、边框宽度/颜色)

import pandas
import matplotlib.pyplot as plt# 防止乱码
plt.rcParams['font.sans-serif'] = ['Microsoft YaHei']# 读取Excel文件内容
df = pandas.read_excel(r'E:\test.xlsx', sheet_name='Sheet1')# 设置图片大小(长15,宽8)
fig = plt.figure(figsize=(15, 8))
ax = fig.add_subplot()# 获取第一行的名称
column_names = df.columns.tolist()# 去除第一行,并转置数据
data = df.T# 创建柱状图
data.plot(kind='bar', #指定绘制的类型为柱状图(line:折线图(默认),bar:柱状图,barh:水平柱状图,hist:直方图,box:箱线图,kde:核密度估计图,density:密度图,area:面积图,scatter:散点图,hexbin:Hexbin 图(用于显示二维数据的分布情况))color='y',  #设置柱子颜色(黄色,见颜色代码)width=0.8,  # 设置柱子宽度edgecolor='k',  #设置柱子边框颜色(黑色,见颜色代码)linewidth=2,    #设置柱子边框宽度ax=ax           #设置图片大小
)# 设置柱子的名称(rotation旋转柱子标题的度数)
plt.xticks(range(len(column_names)), column_names, rotation=0)# 添加标题和坐标轴标签
plt.title('图表标题')
plt.xlabel('横轴标题')
plt.ylabel('纵轴标题')# 显示柱状图
plt.show()

绘制结果如下

                                          

                                         

3. 将生成的折线图写入html文件

3.1. 直接写入图片

使用 MarkupPy  将图片写入html文件

from MarkupPy import markup# 添加图片,设置长、宽
page = markup.page()
page.add('<img src="./filename.png" alt="csv生成的折线图" width="800" height="500">')# 写入文件
with open('./tmp.html', 'w') as file:file.write(str(page))

代码如下(以csv生成的折线图为例)

import pandas
import matplotlib.pyplot as plt
from MarkupPy import markup# 设置csv文件路径
file = r'E:\test.csv'# 防止中文乱码
plt.rcParams['font.sans-serif'] = ['Microsoft YaHei']# 通过pandas读取文件内容
df = pandas.read_csv(file)
# 将文件第一行设置为序列名称
series_names = df .columns# 将文件数据绘制为折线图
plt.plot(df)
plt.legend(series_names)  #设置序列名称
plt.xlabel('横轴标题')     #设置横坐标名称
plt.ylabel('纵轴标题')     #设置纵坐标名称
plt.title('图表标题')      #设置图表标题# 保存图表为png文件
plt.savefig('./filename.png')# 添加图片
page = markup.page()
page.add('<img src="./filename.png" alt="csv生成的折线图" width="800" height="500">')# 写入文件
with open('./tmp.html', 'w') as file:file.write(str(page))

结果如下

                                         

3.2. 添加文字描述

文件描述见 MarkupPy 的详细使用方法

超链接:Python模块MarkupPy & 自定义html报告

                                         

http://www.yayakq.cn/news/211594/

相关文章:

  • 简洁大方 网站wordpress的注册文件在哪
  • 微信做淘宝客网站用织梦做网站有钱途吗
  • 章丘网站开发培训网站建设壹金手指六六1
  • 上海装修做网站的倒闭了长沙做营销型网站公司
  • 开发软件网站多少钱php电子商务网站源码
  • 成都医院做网站建设做presentation的网站
  • 北京网站域名备案查询老油条视频h5
  • 模板网站开发推荐wordpress增加移动端
  • 山东省建设监理协会网站6wordpress-5.2.2中文下载
  • 营销型网站建设工资wordpress可以连微信
  • 海口网站建设公司最基本的网站设计
  • 静态网站如何添加关键词wordpress 轻博客主题
  • 江阳建设集团网站做酒店销售上哪个网站好
  • 网页制造与网站建设论文郑州网站权重
  • 网站建设的要求有哪些wordpress怎么换图标
  • 网站建设采购公告visual studio 做网站
  • 塔罗牌手机网站制作国内高清视频素材网站
  • 哈尔滨 做网站公司哪家好专业做网站的团队推荐
  • 番禺响应式网站建设找房网
  • 做网站cookie传值深圳网络公司推广
  • 网站内容该怎么做展示网站源码下载
  • 湛江网站开发公司wordpress数据库导入插件
  • 普宁网站建设网站弹出的对话框怎么做
  • 莱芜可信赖的网站建设个人主页是重要的营销手段
  • 城北区建设局网站免费wordpress模板问答类
  • 郑州网站建设用户网站栏目怎么做
  • 做网站需要ftp优化新十条
  • 响应式网站模板是什么原因济南seo推广
  • 本地网站做哪方面吸引人第一ppt网
  • 温岭网站制作wordpress 密码 hello