当前位置: 首页 > news >正文

企业门户网站开发公司自己弄个网站要怎么弄

企业门户网站开发公司,自己弄个网站要怎么弄,thinkphp 做门户网站,阿里云网站建设的步骤过程本文介绍了一种名为 **LLM-Pruner** 的方法,用于对大型语言模型(LLMs)进行结构化剪枝,以减少模型大小和计算需求,同时保留其多任务解决和语言生成能力。LLM-Pruner 通过依赖检测和重要性估计实现高效剪枝,并…

本文介绍了一种名为 **LLM-Pruner** 的方法,用于对大型语言模型(LLMs)进行结构化剪枝,以减少模型大小和计算需求,同时保留其多任务解决和语言生成能力。LLM-Pruner 通过依赖检测和重要性估计实现高效剪枝,并结合低秩近似(LoRA)快速恢复模型性能。以下是文章的核心公式及其解释:

---

### 1. **依赖关系的定义**
文章定义了模型中结构之间的依赖关系,用于确定哪些结构需要同时剪枝。依赖关系的定义如下:
- **公式 (1)**:  
  \[
  N_j \in \text{Out}(N_i) \land \text{Deg}^-(N_j) = 1 \Rightarrow N_j \text{ 依赖于 } N_i
  \]
  其中,\(N_i\) 和 \(N_j\) 是模型中的两个神经元,\(\text{Out}(N_i)\) 表示指向 \(N_i\) 的神经元集合,\(\text{Deg}^-(N_j)\) 表示 \(N_j\) 的入度。如果 \(N_j\) 的入度为1且唯一依赖于 \(N_i\),则 \(N_j\) 依赖于 \(N_i\)。

- **公式 (2)**:  
  \[
  N_i \in \text{In}(N_j) \land \text{Deg}^+(N_i) = 1 \Rightarrow N_i \text{ 依赖于 } N_j
  \]
  其中,\(\text{In}(N_j)\) 表示从 \(N_j\) 指向的神经元集合,\(\text{Deg}^+(N_i)\) 表示 \(N_i\) 的出度。如果 \(N_i\) 的出度为1且唯一指向 \(N_j\),则 \(N_i\) 依赖于 \(N_j\)。

**作用**:这些公式用于自动检测模型中耦合的结构,确保剪枝时不会破坏模型的依赖关系。

---

### 2. **重要性估计**
为了决定哪些结构可以被剪枝,文章提出了基于梯度和近似 Hessian 矩阵的重要性估计方法。

- **公式 (3)**:向量级重要性估计  
  \[
  I_{W_i} = |\Delta L(D)| = |L_{W_i}(D) - L_{W_i=0}(D)| = \left|\frac{\partial L(D)}{\partial W_i} W_i - \frac{1}{2} W_i^\top H W_i + O(\|W_i\|^3)\right|
  \]
  其中,\(L\) 是模型的损失函数,\(D\) 是用于估计重要性的数据集,\(H\) 是 Hessian 矩阵。公式中忽略了 Hessian 矩阵的高阶项,因为计算复杂度较高。

- **公式 (4)**:元素级重要性估计  
  \[
  I_{W_k^i} = |\Delta L(D)| = |L_{W_k^i}(D) - L_{W_k^i=0}(D)| = \left|\frac{\partial L(D)}{\partial W_k^i} W_k^i - \frac{1}{2} W_k^i H_{kk} W_k^i + O(\|W_k^i\|^3)\right|
  \]
  其中,\(k\) 表示权重矩阵 \(W_i\) 中的第 \(k\) 个元素,\(H_{kk}\) 是 Hessian 矩阵的对角线元素,可以用 Fisher 信息矩阵近似。

- **公式 (5)**:近似 Hessian 矩阵  
  \[
  I_{W_k^i} \approx |L_{W_k^i}(D) - L_{W_k^i=0}(D)| \approx \left|\frac{\partial L(D)}{\partial W_k^i} W_k^i - \frac{1}{2} \sum_{j=1}^N \left(\frac{\partial L(D_j)}{\partial W_k^i} W_k^i\right)^2 + O(\|W_k^i\|^3)\right|
  \]
  其中,\(N\) 是数据集 \(D\) 的样本数量。

**作用**:这些公式用于评估每个结构或参数对模型性能的影响,帮助选择剪枝的目标。

---

### 3. **组重要性聚合**
文章提出了多种聚合方法来评估整个结构组的重要性:
- **求和(Summation)**:  
  \[
  I_G = \sum_{i=1}^M I_{W_i} \quad \text{或} \quad I_G = \sum_{i=1}^M \sum_k I_{W_k^i}
  \]
- **求积(Product)**:  
  \[
  I_G = \prod_{i=1}^M I_{W_i} \quad \text{或} \quad I_G = \prod_{i=1}^M \prod_k I_{W_k^i}
  \]
- **取最大值(Max)**:  
  \[
  I_G = \max_{i=1}^M I_{W_i} \quad \text{或} \quad I_G = \max_{i=1}^M \max_k I_{W_k^i}
  \]
- **仅最后执行的结构(Last-Only)**:  
  \[
  I_G = I_{W_l} \quad \text{或} \quad I_G = \sum_k I_{W_k^l}
  \]
  其中,\(l\) 是组中最后执行的结构。

**作用**:这些聚合方法用于将单个结构或参数的重要性汇总为组的重要性,以便决定哪些组可以被剪枝。

---

### 4. **快速恢复阶段**
为了快速恢复剪枝后的模型性能,文章使用了低秩近似(LoRA)方法。具体公式如下:
- **公式 (6)**:LoRA 更新  
  \[
  \Delta W = PQ \quad \text{其中} \quad P \in \mathbb{R}^{d^- \times d}, \quad Q \in \mathbb{R}^{d \times d^+}
  \]
  \[
  f(x) = (W + \Delta W)X + b = (WX + b) + (PQ)X
  \]
  其中,\(W\) 是模型的权重矩阵,\(\Delta W\) 是更新值,\(P\) 和 \(Q\) 是低秩矩阵,\(d\) 是低秩维度。

**作用**:LoRA 通过分解权重矩阵的更新值为两个低秩矩阵的乘积,减少了优化参数的数量,从而加速模型的恢复过程。

---

### 5. **实验结果**
文章在多个大型语言模型(如 LLaMA、Vicuna 和 ChatGLM)上验证了 LLM-Pruner 的效果。实验结果表明:
- 在 20% 的剪枝率下,模型保留了 94.97% 的原始性能。
- 使用 LoRA 恢复后,模型的性能进一步提升,且仅需 3 小时的调优时间。
- 剪枝后的模型在零样本分类和生成任务中表现出色,且计算效率显著提高。

---

### 总结
LLM-Pruner 通过依赖关系检测和重要性估计实现了对大型语言模型的高效结构化剪枝,并结合 LoRA 快速恢复模型性能。这种方法在减少模型大小和计算需求的同时,保留了模型的多任务能力和语言生成能力。

http://www.yayakq.cn/news/446335/

相关文章:

  • 福州精美个人网站建设公司网站优化 pdf
  • 网站备案准备资料英文网站标题字体
  • 电子公章在线制作网站没有影视许可怎么用国内空间做网站
  • 在淘宝做印刷网站怎么办易语言 wordpress
  • 两学一做网站源码淘宝pc端官网
  • 企业网站空间多大合适闵行三中网站
  • 博山网站建设深圳集团网站建设报价
  • canvas设计网站网站建设-猴王网络
  • vue做前台网站资源网站哪个好
  • 深圳苏州旅游网站建设服务网站建设验收条款
  • 网站建设和技术服务合同做生蚝的网站
  • 网站的pdf目录怎么做的做网站简单需要什么
  • 网页设计与网站建设报告免费网站百度收录
  • 高端品牌网站建设(杭州)网站建设结算方式
  • 智慧团建网站怎么转团关系网站建设灰色关键词
  • 云南微网站搭建费用怎样查看网站的访问量
  • python可以做网站开发吗网页设计与制作视频
  • 建大型网站公司开化网站建设公司
  • 餐饮外哪个网站做推广网站如何做排名
  • 建立网站可以赚钱吗?首页设计的公司官网
  • 推广员网站怎么做西安网站设计制
  • 海南住房和城乡建设网站app软件定制收费
  • 怎么查询网站名注册嘉兴网站建设方案托管
  • 苏州协会网站建设wordpress主题响应式
  • 产品开发流程8个步骤案例南阳seo网站推广费用
  • centos wordpress建站设计工作室怎么找客户
  • 要找做冲压件的厂去哪个网站找企业网站优化问题
  • 网站主编 做啥室内装潢设计师
  • 北京网站设计联系方式网络营销战略的内涵
  • 电商网站改版方案宁波免费网站建站模板