当前位置: 首页 > news >正文

赣州网站建设开发软文标题大全

赣州网站建设开发,软文标题大全,洛阳做网站的公司哪家好,外部网站链接怎么做前言:记录自己安装TVM的流程,以及一个简单的利用TVM编译模型并执行的示例。 1,官网下载TVM源码 git clone --recursive https://github.com/apache/tvmgit submodule init git submodule update顺便完成准备工作,比如升级cmake版本…

前言:记录自己安装TVM的流程,以及一个简单的利用TVM编译模型并执行的示例。

1,官网下载TVM源码

git clone --recursive https://github.com/apache/tvmgit submodule init
git submodule update

顺便完成准备工作,比如升级cmake版本需要3.18及以上版本。还有如下库:

sudo apt-get update
sudo apt-get install -y python3 python3-dev python3-setuptools gcc libtinfo-dev zlib1g-dev build-essential cmake libedit-dev libxml2-dev

2,安装clang,llvm,ninja

llvm安装依赖clang和ninja,所以直接安装llvm即可顺便完成全部的安装。

llvm ,clang安装参考:Linux系统无痛编译安装LLVM简明指南_linux安装llvm11-CSDN博客

步骤如下:

git clone git@github.com:llvm/llvm-project.gitcd llvm-project
mkdir buildcd buildsudo cmake ../llvm -DLLVM_TARGETS_TO_BUILD=X86 -DCMAKE_BUILD_TYPE=Debug
sudo make -j8
sudo make install

检查版本:

clang --version
llvm-as --version

3,安装NNPACK

NNPACK是为了优化加速神经网络的框架,可以提高在CPU上的计算效率

git clone --recursive https://github.com/Maratyszcza/NNPACK.git
cd NNPACK
# Add PIC option in CFLAG and CXXFLAG to build NNPACK shared library
sed -i "s|gnu99|gnu99 -fPIC|g" CMakeLists.txt
sed -i "s|gnu++11|gnu++11 -fPIC|g" CMakeLists.txt
mkdir build
cd build
# Generate ninja build rule and add shared library in configuration
cmake -G Ninja -D BUILD_SHARED_LIBS=ON ..
ninja
sudo ninja install# Add NNPACK lib folder in your ldconfig
sudo sh -c "echo '/usr/local/lib'>> /etc/ld.so.conf.d/nnpack.conf"
sudo ldconfig

4,编译TVM

如下步骤,在tvm建立build文件夹,把config.cmake复制到build中

cd tvm
mkdir buildcp cmake/config.cmake build

build里的config.cmake是编译配置文件,可以按需打开关闭一些开关。下面是我修改的一些配置(TENSORRT和CUDNN我以为之前已经配置好了,结果编译报了这两个的错误,如果只是想跑流程,可以不打开这两个的开关,这样就能正常编译结束了)

set(USE_RELAY_DEBUG ON)
set(USE_CUDA ON)
set(USE_NNPACK ON)
set(USE_LLVM ON)
set(USE_TENSORRT_CODEGEN ON)
set(USE_TENSORRT_RUNTIME ON)
set(USE_CUDNN ON)

编译代码:

cd build
cmake ..make -j12

5,配置python环境

从build文件夹出来进入到tvm/python文件夹下,执行如下命令,即可配置python中的tvm库了。

cd ../python
python setup.py install

python中使用tvm测试,导入tvm不出错即配置tvm安装成功

import tvmprint(tvm.__version__)

6,一个简单示例

该测试来自TVM官方文档的示例,包括编译一个测试执行一个分类网络和编译器自动调优测试。仅先直观的看到TVM如何作为一个工具对模型编译并部署的流程。

1) 下载onnx模型

wget https://github.com/onnx/models/raw/b9a54e89508f101a1611cd64f4ef56b9cb62c7cf/vision/classification/resnet/model/resnet50-v2-7.onnx

2) 编译onnx模型

python -m tvm.driver.tvmc compile --target "llvm" --input-shapes "data:[1,3,224,224]" --output resnet50-v2-7-tvm.tar resnet50-v2-7.onnx

如果报这样的警告:

就在git上下载一份tophub,把整个文件夹tophub复制到 ~/.tvm/路径下

git clone git@github.com:tlc-pack/tophub.git
sudo cp -r tophub ~/.tvm/

解压生成的tvm编译模型,得到3个文件:

  • mod.so  作为一个C++库的编译模型, 能被 TVM runtime加载

  • mod.json TVM Relay计算图的文本表示

  • mod.params onnx模型的预训练权重参数

mkdir model
tar -xvf resnet50-v2-7-tvm.tar -C model
ls model

3) 输入数据前处理

python preprocess.py

图像处理代码文件:preprocess.py

#!python ./preprocess.py
from tvm.contrib.download import download_testdata
from PIL import Image
import numpy as npimg_url = "https://s3.amazonaws.com/model-server/inputs/kitten.jpg"
img_path = download_testdata(img_url, "imagenet_cat.png", module="data")# Resize it to 224x224
resized_image = Image.open(img_path).resize((224, 224))
img_data = np.asarray(resized_image).astype("float32")# ONNX expects NCHW input, so convert the array
img_data = np.transpose(img_data, (2, 0, 1))# Normalize according to ImageNet
imagenet_mean = np.array([0.485, 0.456, 0.406])
imagenet_stddev = np.array([0.229, 0.224, 0.225])
norm_img_data = np.zeros(img_data.shape).astype("float32")
for i in range(img_data.shape[0]):norm_img_data[i, :, :] = (img_data[i, :, :] / 255 - imagenet_mean[i]) / imagenet_stddev[i]# Add batch dimension
img_data = np.expand_dims(norm_img_data, axis=0)# Save to .npz (outputs imagenet_cat.npz)
np.savez("imagenet_cat", data=img_data)

4) 运行编译模型

python -m tvm.driver.tvmc run --inputs imagenet_cat.npz --output predictions.npz resnet50-v2-7-tvm.tar

5) 输出后处理

python postprocess.py

执行之后得到分类结果的输出:

class='n02123045 tabby, tabby cat' with probability=0.621104
class='n02123159 tiger cat' with probability=0.356378
class='n02124075 Egyptian cat' with probability=0.019712
class='n02129604 tiger, Panthera tigris' with probability=0.001215
class='n04040759 radiator' with probability=0.000262

后处理代码:postprocess.py

#!python ./postprocess.py
import os.path
import numpy as npfrom scipy.special import softmaxfrom tvm.contrib.download import download_testdata# Download a list of labels
labels_url = "https://s3.amazonaws.com/onnx-model-zoo/synset.txt"
labels_path = download_testdata(labels_url, "synset.txt", module="data")with open(labels_path, "r") as f:labels = [l.rstrip() for l in f]output_file = "predictions.npz"# Open the output and read the output tensor
if os.path.exists(output_file):with np.load(output_file) as data:scores = softmax(data["output_0"])scores = np.squeeze(scores)ranks = np.argsort(scores)[::-1]for rank in ranks[0:5]:print("class='%s' with probability=%f" % (labels[rank], scores[rank]))

6) 编译器自动调优

调优的算法使用的是xgboost,所以需要python安装一下这个库。

pip install xgboostpython -m tvm.driver.tvmc tune --target "llvm" --output resnet50-v2-7-autotuner_records.json resnet50-v2-7.onnx

7) 重新编译并执行调优后的模型

python -m tvm.driver.tvmc compile --target "llvm" --tuning-records resnet50-v2-7-autotuner_records.json  --output resnet50-v2-7-tvm_autotuned.tar resnet50-v2-7.onnxpython -m tvm.driver.tvmc run --inputs imagenet_cat.npz --output predictions.npz resnet50-v2-7-tvm_autotuned.tarpython postprocess.py

预测结果:
 

class='n02123045 tabby, tabby cat' with probability=0.610552
class='n02123159 tiger cat' with probability=0.367180
class='n02124075 Egyptian cat' with probability=0.019365
class='n02129604 tiger, Panthera tigris' with probability=0.001273
class='n04040759 radiator' with probability=0.000261

8) 比较编译前后执行模型的速度

python -m tvm.driver.tvmc run --inputs imagenet_cat.npz --output predictions.npz  --print-time --repeat 100 resnet50-v2-7-tvm_autotuned.tarpython -m tvm.driver.tvmc run --inputs imagenet_cat.npz --output predictions.npz  --print-time --repeat 100 resnet50-v2-7-tvm.tar

执行时间如下,上面是自动调优过的的,可以明显看出推理时间上的优化效果。 

Execution time summary:mean (ms)   median (ms)    max (ms)     min (ms)     std (ms)  84.6208      74.9435      143.9276     72.8249      19.0734 mean (ms)   median (ms)    max (ms)     min (ms)     std (ms)  131.1953     130.7819     140.6614     106.0725      3.5606

比较了一下两个编译后模型的Relay计算图json文件的区别,就看到了算子数据layout的区别,更多细节还是要看源码吧

参考:TVM Ubuntu20安装_ubuntu20.04配置tvm_shelgi的博客-CSDN博客

http://www.yayakq.cn/news/529006/

相关文章:

  • 一个专门做ppt的网站吗快速生成网站程序
  • 网站做apk制作工具做一个app需要多少费用
  • 深圳如何做网站设计模版网站
  • 黄村做网站哪家好做网站优化的关键词怎么设置
  • 古典风网站白城学习做网站的学校
  • 贵安建设厅网站手机适配网站
  • 如何建设vr网站网站首页设计效果图
  • 网站空间购买北京安卓应用
  • 安远网络推广公司杭州网站seo价格
  • 济南集团网站建设报价以前做的网站怎么才能登陆后台
  • 手机网站开发下载汽车美容网站模板
  • 视频播放网站模板c#网站开发技术
  • 如何做旅游小视频网站东莞 网站建设多少钱
  • 做网站的域名是做什么用的搜题在线使用网页版
  • 自动做网页的网站seo推广公司
  • 成都保障房中心官方网站笔记 发布 wordpress
  • 网站突然排名没了wordpress 微信端 主题
  • O2O网站建设需要多少钱品牌推广是什么工作
  • 公司网站开发 nodejswordpress重定向seo
  • 哈尔滨寸金网站建设价钱民权做网站
  • 四川润邦建设工程设计有限公司网站网站建设 美词
  • 在哪里做网站短视频素材下载网站无水印
  • 免费建设手机网站宿城网站建设
  • 有没有做校园文化的网站广州市网站建设公
  • 盗版做的最好的网站卫辉网站建设
  • 网站推广与优化怎么做discuz网站伪静态设置
  • 万能网盘搜索引擎入口网站优化要从哪些方面做
  • 广州做企业网站的公司餐饮logo创意设计
  • 泰安企业建站公司服务好的家装设计
  • 网站改版影响做网站的网站违不违法