当前位置: 首页 > news >正文

网站源码免费的兰州城建设计院网站

网站源码免费的,兰州城建设计院网站,网站后台编辑器内容不显示,网页游戏排行榜在线玩动态规划part09 198.打家劫舍解题思路 213.打家劫舍II解题思路 337.打家劫舍III解题思路 今天就是打家劫舍的一天,这个系列不算难,大家可以一口气拿下。 198.打家劫舍 题目链接: 198.打家劫舍 视频讲解: 198.打家劫舍 文章讲解&…

动态规划part09

  • 198.打家劫舍
    • 解题思路
  • 213.打家劫舍II
    • 解题思路
  • 337.打家劫舍III
    • 解题思路

今天就是打家劫舍的一天,这个系列不算难,大家可以一口气拿下。

198.打家劫舍

题目链接: 198.打家劫舍
视频讲解: 198.打家劫舍
文章讲解: 198.打家劫舍

解题思路

递归五部曲

  1. 确定dp数组以及下标的含义
    dp[i]:考虑下标i(包括i)以内的房屋,最多可以偷窃的金额为dp[i]。
  2. 确定递推公式
    dp[i] = dp[i - 2] + nums[i] ,即:第i-1房一定是不考虑的,找出 下标i-2(包括i-2)以内的房屋,最多可以偷窃的金额为dp[i-2] 加上第i房间偷到的钱。
  3. dp数组如何初始化
    递推公式的基础就是dp[0] 和 dp[1]
    dp[0] = nums[0],dp[1] = max(nums[0], nums[1]);
  4. 遍历顺序
    从前到后
  5. 举例推导dp数组
// 动态规划
class Solution {public int rob(int[] nums) {if(nums == null || nums.length == 0) return 0;if(nums.length == 1) return nums[0];int[] dp = new int[nums.length];dp[0] = nums[0];dp[1] = Math.max(dp[0], nums[1]);for(int i = 2; i < nums.length; i++){dp[i] = Math.max(dp[i - 1], dp[i - 2] + nums[i]);}return dp[nums.length - 1];}
}

213.打家劫舍II

题目链接: 213.打家劫舍II
视频讲解: 213.打家劫舍II
文章讲解: 213.打家劫舍II

解题思路

对于一个数组,成环的话主要有如下三种情况:
情况一:考虑不包含首尾元素
情况二:考虑包含首元素,不包含尾元素
情况三:考虑包含尾元素,不包含首元素
而情况二 和 情况三 都包含了情况一了,所以只考虑情况二和情况三就可以了。
分析到这里,剩下的和198.打家劫舍就是一样的了。

class Solution {public int rob(int[] nums) {if(nums == null || nums.length == 0) return 0;if(nums.length == 1) return nums[0];return Math.max(robAction(nums, 0, nums.length - 1), robAction(nums, 1, nums.length));}int robAction(int[] nums, int start, int end) {int dp3 = 0;int dp2 = 0;int dp1 = 0;for(int i = start; i < end; i++){dp1 = dp3;dp3 = Math.max(dp1, dp2 + nums[i]);dp2 = dp1;}return dp3;}// 运行没通过 不知道为啥// int robAction(int[] nums, int start, int end) {//     int[] dp = new int[nums.length];//     dp[start] = nums[start];//     dp[start + 1] = Math.max(dp[0], nums[start + 1]);//     for(int i = start + 2; i < end; i++){//         dp[i] = Math.max(dp[i - 1], dp[i - 2] + nums[i]);//     }//     return dp[end - 1];// }
}

337.打家劫舍III

题目链接: 337.打家劫舍III
视频讲解: 337.打家劫舍III
文章讲解: 337.打家劫舍III

解题思路

动态规划和二叉树的结合
动态规划其实就是使用状态转移容器来记录状态的变化,这里可以使用一个长度为2的数组,记录当前节点偷与不偷所得到的的最大金钱。
递归三部曲

  1. 确定递归函数的参数和返回值
    长度为2的dp数组
    dp[0]0记录不偷该节点所得到的的最大金钱,dp[1]1记录偷该节点所得到的的最大金钱。
  2. 确定终止条件
    在遍历的过程中,如果遇到空节点的话,很明显,无论偷还是不偷都是0,所以就返回
  3. 确定遍历顺序
    首先明确的是使用后序遍历。 因为要通过递归函数的返回值来做下一步计算。
    通过递归左节点,得到左节点偷与不偷的金钱。
    通过递归右节点,得到右节点偷与不偷的金钱。
  4. 确定单层递归的逻辑
    如果是偷当前节点,那么左右孩子就不能偷,val1 = cur->val + left[0] + right[0]; (如果对下标含义不理解就再回顾一下dp数组的含义)
    如果不偷当前节点,那么左右孩子就可以偷,至于到底偷不偷一定是选一个最大的,所以:val2 = max(left[0], left[1]) + max(right[0], right[1]);
    最后当前节点的状态就是{val2, val1}; 即:{不偷当前节点得到的最大金钱,偷当前节点得到的最大金钱}
  5. 举例推导dp数组
 // 动态规划
class Solution {public int rob(TreeNode root) {int[] res = robAction(root);return Math.max(res[0], res[1]);}int[] robAction(TreeNode root){int res[] = new int[2]; // res[0] 代表不偷时的价值 res[1]代表偷的时候的价值// 终止递归条件if(root == null){return res;}// 后序遍历// 左右int[] left = robAction(root.left);int[] right = robAction(root.right);// 中res[0] = Math.max(left[0], left[1]) +Math.max(right[0], right[1]);res[1] = root.val + left[0] + right[0];return res;}
}
http://www.yayakq.cn/news/841930/

相关文章:

  • php网站建设教程若要使用链接目标在新窗口打开
  • 中文字体设计网站wordpress熊掌号资源提交
  • 网站页脚优化怎么做网页设计尺寸pc端
  • 网站建设目标的技术可行性中国企业网控股有限公司
  • 平面设计网站导航做网站的软件初中生
  • 买服务器的网站做个视频网站
  • 网站系统架构设计建材 东莞网站建设
  • 西安哪家公司网站做的好国际新闻最新消息今天核废水
  • 桂林 网站 制作住房和城市建设部网站
  • 长宁区网站制网站设计有哪些语言版本
  • 什么是网站开发流程蜘蛛不抓取网站的原因
  • 阳泉市编办网站三基建设网站上设置多语言怎么做
  • wordpress 电影站主题深圳专业高端网站建设
  • 建设vip视频解析网站违法吗西安有哪些做网站的公司好
  • 设置网站电商网站设计页面设计
  • 建材做网销哪个网站好去国外做外卖网站
  • 旅游网站平台建设的方案跨境电商产品推广方案
  • 企业网站标签页是什么什么是网络营销的特点
  • 做包装盒效果图网站wordpress添加3D
  • flash 做网站郑州网站建设创新网络
  • 企业网站怎么做的高大上汕头网站设计定制
  • 杭州哪里可以做网站推广系统模板html
  • 高频网站开发深圳宝安西乡
  • 福州医院网站建设公司大连企业网络推广哪家好
  • 广水住房和城乡建设部网站wordpress 支持手机6
  • 网站虚拟空间更新缓存平台期怎么突破
  • 深圳分销网站设计哪家好网站规划 评价
  • 快餐网站模板南宁保障住房建设管理服务中心网站
  • cn域名著名网站企业建设流程
  • 惠安通网站建设电商模板网站免费