当前位置: 首页 > news >正文

石桥铺网站建设公司时事新闻最新

石桥铺网站建设公司,时事新闻最新,公司网站建设沈阳,高校网站集群平台子站开发题目: 给你一个长度为 n 的整数数组 nums 和 一个目标值 target。请你从 nums 中选出三个整数,使它们的和与 target 最接近。 返回这三个数的和。 假定每组输入只存在恰好一个解。 解法一(排序双指针): 题目要求找…

题目:

给你一个长度为 n 的整数数组 nums 和 一个目标值 target。请你从 nums 中选出三个整数,使它们的和与 target 最接近。

返回这三个数的和。

假定每组输入只存在恰好一个解。

解法一(排序+双指针):

题目要求找到与目标值 target 最接近的三元组,这里的「最接近」即为差值的绝对值最小。我们可以考虑直接使用三重循环枚举三元组,找出与目标值最接近的作为答案,时间复杂度为 O(N^3)。然而本题的 N 最大为 1000,会超出时间限制。

我们首先枚举第一个元素 a1,对于剩下的两个元素 a2和 a3,希望它们的和最接近target−a1。对于 a2 和 a3,如果它们在原数组中枚举的范围(既包括下标的范围,也包括元素值的范围)没有任何规律可言,那么我们还是只能使用两重循环来枚举所有的可能情况。因此,我们可以考虑对整个数组进行升序排序,这样一来

  • 假设数组的长度为 n,我们先枚举 a1,它在数组中的位置为 i;

  • 为了防止重复枚举,我们在位置 [i+1,n) 的范围内枚举 a2 和 a3。

当我们知道了a2和a3可以枚举的下标范围,并且知道这一范围对应的数组元素是有序(升序)的,那么我们是否可以对枚举的过程进行优化呢?

借助双指针对枚举的过程进行优化,我们用a2和a3作为双指针,初始时,a2指向位置i+1,即左边界,a3指向位置n-1,即右边界。在每一步枚举过程中,我们采用a1+a2+a3来更新答案,并且

  • 如果 a1+a2+a3≥target,那么就将 a3 向左移动一个位置;

  • 如果 a1+a2+a3<target,那么就将 a2​ 向右移动一个位置。

这是为什么呢,我们对 a1+a2+a3≥target的情况进行详细的分析:

如果a1+a2+a3≥target,并且我们知道a2和a3这个范围是按照升序排列的,那么如果a3不变而移动a2向右,那么a1+a2+a3的值就会不断地增加,显然就不会成为最接近target的值了。因此,我们可以知道在固定a3的情况下,此时的a2就可以得到一个最接近target的值了,那么我们以后就不用再考虑a3了,就可以将a3向左移动一个位置。

同样地,a1+a2+a3<target 时,如果a2不变而a3向左移动,那么a1+a2+a3的值就会不断地减小,显然就不会成为最接近target的值了。因此,我们可以知道固定了a2的情况下,此时的a3就可以得到一个最接近target的值,那么我们以后就不用再考虑a2了,就可以将a2向右移动一个位置。

实际上,a2和a3就表示我们当前选择的数的范围,而每一次枚举的过程中,我们尝试边界上的两个元素,根据它们与target的值的关系,选择【抛弃】左边界的元素还是右边界的元素,从而减少了枚举的范围。这种思路与【盛最多水的容器】中的双指针解法也是类似的。当我们枚举,a1,a2,a3 中任意元素并移动指针时,可以直接将其移动到下一个与这次枚举得到的不相同的元素,减少枚举的次数,如下代码为:

class Solution {
public:int threeSumClosest(vector<int>& nums, int target) {sort(nums.begin(), nums.end());int n = nums.size();int best = 1e7;// 根据差值的绝对值来更新答案auto update = [&](int cur) {if (abs(cur - target) < abs(best - target)) {best = cur;}};// 枚举 afor (int i = 0; i < n; ++i) {// 保证和上一次枚举的元素不相等if (i > 0 && nums[i] == nums[i - 1]) {continue;}// 使用双指针枚举 b 和 cint j = i + 1, k = n - 1;while (j < k) {int sum = nums[i] + nums[j] + nums[k];// 如果和为 target 直接返回答案if (sum == target) {return target;}update(sum);if (sum > target) {// 如果和大于 target,移动 c 对应的指针int k0 = k - 1;// 移动到下一个不相等的元素while (j < k0 && nums[k0] == nums[k]) {--k0;}k = k0;} else {// 如果和小于 target,移动 b 对应的指针int j0 = j + 1;// 移动到下一个不相等的元素while (j0 < k && nums[j0] == nums[j]) {++j0;}j = j0;}}}return best;}
};

时间复杂度:O(N2),其中 N 是数组 nums 的长度。我们首先需要 O(NlogN) 的时间对数组进行排序,随后在枚举的过程中,使用一重循环 O(N) 枚举 a,双指针 O(N) 枚举 b 和 c,故一共是 O(N2)。

空间复杂度:O(logN)。排序需要使用 O(logN) 的空间。然而我们修改了输入的数组 nums,在实际情况下不一定允许,因此也可以看成使用了一个额外的数组存储了 nums 的副本并进行排序,此时空间复杂度为 O(N)。

下面代码是笔者在编程时所写的,虽然时间复杂度没有超限,但是相比上面代码在时间复杂度上面仍然是消耗时间比较大的,但是空间复杂度上面比上面代码占用消耗是较小的。其中第二层循环中思路也是:如果和小于target,则移动a2向右移动,进入下一次循环;如果和大于target,则移动a3向左移动,执行while循环,实现原理通过增加条件判断语句使得双指针(左边界指针、右边界指针)两个指针朝着相遇的方向进行移动(减少时间复杂度,防止重复遍历),但是阅读理解代码起来较为复杂,同样是作为正确的解决思路与上面方法进行对比,如下为笔者代码:

class Solution {
public:int threeSumClosest(vector<int>& nums, int target) {//定义输出结果result值int min_value = 1000000, length=nums.size();int result=0;//将nums数组由小到大重新进行排序sort(nums.begin(), nums.end());//循环遍历查找满足条件要求的结果for(int a1=0; a1<length-2; a1++){if(a1>1 && nums[a1]==nums[a1-1]){continue;}for(int a2=a1+1; a2<length-1;a2++){if(a2>a1+1 && nums[a2]==nums[a2-1]){continue;}int a3 = length-1;//如果和小于target,则移动a2向右移动(进入下一层循环)if(nums[a1]+nums[a2]+nums[a3]<target){result=min_value>abs(nums[a1]+nums[a2]+nums[a3]-target)?(nums[a1]+nums[a2]+nums[a3]):result;min_value = min(abs(nums[a1]+nums[a2]+nums[a3]-target), min_value);continue;}while(a2<a3){if(nums[a1]+nums[a2]+nums[a3]<target){result=min_value>abs(nums[a1]+nums[a2]+nums[a3]-target)?(nums[a1]+nums[a2]+nums[a3]):result;min_value = min(abs(nums[a1]+nums[a2]+nums[a3]-target), min_value);result=min_value>abs(nums[a1]+nums[a2]+nums[a3+1]-target)?(nums[a1]+nums[a2]+nums[a3+1]):result;min_value = min(abs(nums[a1]+nums[a2]+nums[a3+1]-target), min_value);break;}//如果和大于target,则移动a3向左移动(执行while循环)else{result=min_value>abs(nums[a1]+nums[a2]+nums[a3]-target)?(nums[a1]+nums[a2]+nums[a3]):result;min_value = min(abs(nums[a1]+nums[a2]+nums[a3]-target), min_value);a3--;}}}}return result;}
};

笔者小记:

1、借助双指针对枚举的过程进行优化,降低多重循环导致的时间复杂度。对于本题,时间复杂度可由O(N^3)降低至O(N^2)。

http://www.yayakq.cn/news/104895/

相关文章:

  • 网站开发 工期安排网站成立查询
  • 外贸网站交易平台python 营销型网站建设
  • 嘉兴企业网站推广方法平面设计黑白创意图片
  • 中国核工业华兴建设公司网站推广网站要注意什么
  • dw制作简单网站模板下载工程公司注册条件
  • 做网站外链需要多少钱网站开发的项目需求
  • 企业网站的在线推广方法有哪些网站中文域名好不好
  • 检测网站是否做了301网站域名可以改么
  • asp.net网站开发教程淄博网站建设多少钱
  • 开发外包网站那些网站做民宿
  • 重庆业务网站建设竞价在什么网站上做
  • 一个电商网站建设需要哪些技术市北建筑建网站哪家好
  • 可以做展示页面的网站易思espcms企业网站管理系统
  • 辛集外贸网站建设顺企网怎么样
  • 深圳北站设计方案镜像站wordpress
  • 营口市组织部两学一做网站河南省工程建设信息官方网站
  • jsp网站开发中js的问题怎么做网页个人信息
  • 北京保障性住房建设投资中心网站福州城市建设规划网站
  • 兴国县城乡规划建设局网站seo工具助力集群式网站升级
  • 湛江网站营销重庆网站建设的公司
  • 天津河北做网站的公司排名正能量网站推荐
  • 信宜网站开发公司企业网站缺点
  • 网站流量超沈阳网页设计兼职
  • 长春站建筑html5网站怎么建设后台怎么弄
  • 网络推广引流软件seo线上培训机构
  • 百度广告联盟平台seo搜索引擎营销工具
  • 做的新网站能用多久信阳专业网站建设
  • 网站蜘蛛怎么看微信商城怎么开店
  • 网站建设分析案例化妆品网络营销方案
  • 软件公司网站做微商的网站