当前位置: 首页 > news >正文

网站怎样做推广计划wordpress访问目录权限

网站怎样做推广计划,wordpress访问目录权限,深圳市科技网站开发,wordpress企业主题模板《Towards Black-Box Membership Inference Attack for Diffusion Models》 Abstract 识别艺术品是否用于训练扩散模型的挑战,重点是人工智能生成的艺术品中的成员推断攻击——copyright protection不需要访问内部模型组件的新型黑盒攻击方法展示了在评估 DALL-E …

《Towards Black-Box Membership Inference Attack for Diffusion Models》

Abstract

  1. 识别艺术品是否用于训练扩散模型的挑战,重点是人工智能生成的艺术品中的成员推断攻击——copyright protection
  2. 不需要访问内部模型组件的新型黑盒攻击方法
  3. 展示了在评估 DALL-E 生成的数据集方面的卓越性能。

作者主张

previous methods are not yet ready for copyright protection in diffusion models.

Contributions(文章里有三点,我觉得只有两点)

  1. ReDiffuse:using the model’s variation API to alter an image and compare it with the original one.
  2. A new MIA evaluation dataset:use the image titles from LAION-5B as prompts for DALL-E’s API [31] to generate images of the same contents but different styles.

Algorithm Design

target model:DDIM

为什么要强行引入一个版权保护的概念???

定义black-box variation API

x ^ = V θ ( x , t ) \hat{x}=V_{\theta}(x,t) x^=Vθ(x,t)

细节如下:

image-20240714153919091

image-20240714154002587

总结为: x x x加噪变为 x t x_t xt,再通过DDIM连续降噪变为 x ^ \hat{x} x^

intuition

Our key intuition comes from the reverse SDE dynamics in continuous diffusion models.

one simplified form of the reverse SDE (i.e., the denoise step)
X t = ( X t / 2 − ∇ x log ⁡ p ( X t ) ) + d W t , t ∈ [ 0 , T ] (3) X_t=(X_t/2-\nabla_x\log p(X_t))+dW_t,t\in[0,T]\tag{3} Xt=(Xt/2xlogp(Xt))+dWt,t[0,T](3)

The key guarantee is that when the score function is learned for a data point x, then the reconstructed image x ^ i \hat{x}_i x^i is an unbiased estimator of x x x.(算是过拟合的另一种说法吧)

Hence,averaging over multiple independent samples x ^ i \hat{x}_i x^i would greatly reduce the estimation error (see Theorem 1).

On the other hand, for a non-member image x ′ x' x, the unbiasedness of the denoised image is not guaranteed.

image-20240715221809436

details of algorithm:

  1. independently apply the black-box variation API n times with our target image x as input
  2. average the output images
  3. compare the average result x ^ \hat{x} x^ with the original image.

evaluate the difference between the images using an indicator function:
f ( x ) = 1 [ D ( x , x ^ ) < τ ] f(x)=1[D(x,\hat{x})<\tau] f(x)=1[D(x,x^)<τ]
A sample is classified to be in the training set if D ( x , x ^ ) D(x,\hat{x}) D(x,x^) is smaller than a threshold τ \tau τ ( D ( x , x ^ ) D(x,\hat{x}) D(x,x^) represents the difference between the two images)

ReDiffuse

image-20240715201536961

image-20240715212401773
Theoretical Analysis

什么是sampling interval???

MIA on Latent Diffusion Models

泛化到latent diffusion model,即Stable Diffusion

ReDiffuse+

variation API for stable diffusion is different from DDIM, as it includes the encoder-decoder process.
z = E n c o d e r ( x ) , z t = α ‾ t z + 1 − α ‾ t ϵ , z ^ = Φ θ ( z t , 0 ) , x ^ = D e c o d e r ( z ^ ) (4) z={\rm Encoder}(x),\quad z_t=\sqrt{\overline{\alpha}_t}z+\sqrt{1-\overline{\alpha}_t}\epsilon,\quad \hat{z}=\Phi_{\theta}(z_t,0),\quad \hat{x}={\rm Decoder}(\hat{z})\tag{4} z=Encoder(x),zt=αt z+1αt ϵ,z^=Φθ(zt,0),x^=Decoder(z^)(4)
modification of the algorithm

independently adding random noise to the original image twice and then comparing the differences between the two restored images x ^ 1 \hat{x}_1 x^1 and x ^ 2 \hat{x}_2 x^2:
f ( x ) = 1 [ D ( x ^ 1 , x ^ 2 ) < τ ] f(x)=1[D(\hat{x}_1,\hat{x}_2)<\tau] f(x)=1[D(x^1,x^2)<τ]

Experiments

Evaluation Metrics
  1. AUC
  2. ASR
  3. TPR@1%FPR
same experiment’s setup in previous papers [5, 18].
target modelDDIMStable Diffusion
version《Are diffusion models vulnerable to membership inference attacks?》original:stable diffusion-v1-5 provided by Huggingface
datasetCIFAR10/100,STL10-Unlabeled,Tiny-Imagenetmember set:LAION-5B,corresponding 500 images from LAION-5;non-member set:COCO2017-val,500 images from DALL-E3
T10001000
k10010
baseline methods[5]Are diffusion models vulnerable to membership inference attacks?: SecMIA[18]An efficient membership inference attack for the diffusion model by proximal initialization.[28]Membership inference attacks against diffusion models
publicationInternational Conference on Machine LearningarXiv preprint2023 IEEE Security and Privacy Workshops (SPW)
Ablation Studies
  1. The impact of average numbers
  2. The impact of diffusion steps
  3. The impact of sampling intervals
http://www.yayakq.cn/news/933889/

相关文章:

  • 门业网站 源码做侵权视频网站
  • 福田设计网站php技术的网站建设实录方案
  • 网站设计O2O平台wordpress主页制作
  • 北京公司网站建设服务谷歌网站流量统计
  • 提供网站建设和制作目前最好的引流推广方法
  • 描述网站的整体建设一般步骤站群系列服务器做视频网站
  • 旅游网站前端建设论文邯郸做网站的地方
  • wordpress会员积分充值插件酒店网站搜索引擎优化方案
  • 如何做网站的二级页面网站制作建设公司哪家好
  • 做摄影的网站知乎高端网站建设设计公司哪家好
  • 男女做羞羞事的网站免费seo快速排名系统
  • 怎样注册自己的货运网站双云官方网站
  • 公司门户网站建设惠州app网站建设排行榜
  • 菏泽做网站公司平面设计课程培训
  • 网络架构分析小说网站怎么做seo
  • 南京网站建设中企动力邀请注册推广赚钱
  • 山东省交通运输厅网站开发单位17网站一起做网店潮汕
  • 下了网站建设尚义住房和城乡规划建设局网站
  • 郑州网站搭建的公司谷歌网站统计
  • 沈阳做网站找黑酷科技wordpress入门教程(视频)
  • 了解网站建设的基本流程青岛手机网站设计公司
  • 网站服务器怎么搭建如何做一个微笑公众号推文
  • 网站页尾的作用做网站添加支付功能要多少钱
  • 商会网站建设方案书仅仅建设银行网站打不开
  • 大理网站制作表格模板免费下载网站
  • 网站查询入口化妆所有步骤
  • 中山网站建设推荐有哪些可以做策划方案的网站
  • 如何给网站绑定域名江苏首天建设集团网站
  • 广州做地铁的公司网站wordpress页面加载慢
  • 品牌网站建设推广网站信息优化的方式