当前位置: 首页 > news >正文

前后端分离企业网站源码国际时事新闻最新消息

前后端分离企业网站源码,国际时事新闻最新消息,佛山 两学一做 网站,56做视频网站一、目的 由于部分数据类型频率为1s,从而数据规模特别大,因此完整的JSON放在Hive中解析起来,尤其是在单机环境下,效率特别慢,无法满足业务需求。 而Flume的拦截器并不能很好的转换数据,因为只能采用Java方…

一、目的

由于部分数据类型频率为1s,从而数据规模特别大,因此完整的JSON放在Hive中解析起来,尤其是在单机环境下,效率特别慢,无法满足业务需求。

而Flume的拦截器并不能很好的转换数据,因为只能采用Java方式,从Kafka的主题A中采集数据,并解析字段,然后写入到放在Kafka主题B中

二 、原始数据格式

JSON格式比较正常,对象中包含数组

{
    "deviceNo": "39",
    "sourceDeviceType": null,
    "sn": null,
    "model": null,
    "createTime": "2024-09-03 14:10:00",
    "data": {
        "cycle": 300,
        "evaluationList": [{
            "laneNo": 1,
            "laneType": null,
            "volume": 3,
            "queueLenMax": 11.43,
            "sampleNum": 0,
            "stopAvg": 0.54,
            "delayAvg": 0.0,
            "passRate": 0.0,
            "travelDist": 140.0,
            "travelTimeAvg": 0.0
        },
        {
            "laneNo": 2,
            "laneType": null,
            "volume": 7,
            "queueLenMax": 23.18,
            "sampleNum": 0,
            "stopAvg": 0.47,
            "delayAvg": 10.57,
            "passRate": 0.0,
            "travelDist": 140.0,
            "travelTimeAvg": 0.0
        },
        {
            "laneNo": 3,
            "laneType": null,
            "volume": 9,
            "queueLenMax": 11.54,
            "sampleNum": 0,
            "stopAvg": 0.18,
            "delayAvg": 9.67,
            "passRate": 0.0,
            "travelDist": 140.0,
            "travelTimeAvg": 0.0
        },
        {
            "laneNo": 4,
            "laneType": null,
            "volume": 6,
            "queueLenMax": 11.36,
            "sampleNum": 0,
            "stopAvg": 0.27,
            "delayAvg": 6.83,
            "passRate": 0.0,
            "travelDist": 140.0,
            "travelTimeAvg": 0.0
        }]
    }
}

三、Java代码

package com.kgc;import com.fasterxml.jackson.databind.JsonNode;
import com.fasterxml.jackson.databind.ObjectMapper;
import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.clients.producer.RecordMetadata;
import org.apache.kafka.common.serialization.StringDeserializer;
import org.apache.kafka.common.serialization.StringSerializer;
import java.time.Duration;
import java.util.Collections;
import java.util.Properties;public class KafkaKafkaEvaluation {// 添加 Kafka Producer 配置private static Properties producerProps() {Properties props = new Properties();props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "192.168.0.70:9092");props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class);props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class);props.put(ProducerConfig.ACKS_CONFIG, "-1");props.put(ProducerConfig.RETRIES_CONFIG, "3");props.put(ProducerConfig.BATCH_SIZE_CONFIG, "16384");props.put(ProducerConfig.LINGER_MS_CONFIG, "1");props.put(ProducerConfig.BUFFER_MEMORY_CONFIG, "33554432");return props;}public static void main(String[] args) {Properties prop = new Properties();prop.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "192.168.0.70:9092");prop.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);prop.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);prop.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, "false");prop.put(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG, "1000");prop.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");// 每一个消费,都要定义不同的Group_IDprop.put(ConsumerConfig.GROUP_ID_CONFIG, "evaluation_group");KafkaConsumer<String, String> consumer = new KafkaConsumer<>(prop);consumer.subscribe(Collections.singleton("topic_internal_data_evaluation"));ObjectMapper mapper = new ObjectMapper();// 初始化 Kafka ProducerKafkaProducer<String, String> producer = new KafkaProducer<>(producerProps());while (true) {ConsumerRecords<String, String> records = consumer.poll(Duration.ofMillis(1000));for (ConsumerRecord<String, String> record : records) {try {JsonNode rootNode = mapper.readTree(record.value());System.out.println("原始数据"+rootNode);String device_no = rootNode.get("deviceNo").asText();String source_device_type = rootNode.get("sourceDeviceType").asText();String sn = rootNode.get("sn").asText();String model = rootNode.get("model").asText();String create_time = rootNode.get("createTime").asText();String cycle = rootNode.get("data").get("cycle").asText();JsonNode evaluationList = rootNode.get("data").get("evaluationList");for (JsonNode evaluationItem : evaluationList) {String lane_no = evaluationItem.get("laneNo").asText();String lane_type = evaluationItem.get("laneType").asText();String volume = evaluationItem.get("volume").asText();String queue_len_max = evaluationItem.get("queueLenMax").asText();String sample_num = evaluationItem.get("sampleNum").asText();String stop_avg = evaluationItem.get("stopAvg").asText();String delay_avg = evaluationItem.get("delayAvg").asText();String pass_rate = evaluationItem.get("passRate").asText();String travel_dist = evaluationItem.get("travelDist").asText();String travel_time_avg = evaluationItem.get("travelTimeAvg").asText();String outputLine = String.format("%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s",device_no, source_device_type, sn, model, create_time, cycle,lane_no, lane_type,volume,queue_len_max,sample_num,stop_avg,delay_avg,pass_rate,travel_dist,travel_time_avg);// 发送数据到 KafkaProducerRecord<String, String> producerRecord = new ProducerRecord<>("topic_db_data_evaluation", record.key(), outputLine);producer.send(producerRecord, (RecordMetadata metadata, Exception e) -> {if (e != null) {e.printStackTrace();} else {System.out.println("The offset of the record we just sent is: " + metadata.offset());}});}} catch (Exception e) {e.printStackTrace();}}consumer.commitAsync();}}}

1、服务器IP都是   192.168.0.70

2、消费Kafka主题(数据源):topic_internal_data_evaluation

3、生产Kafka主题(目标源):topic_db_data_evaluation

4、注意:字段顺序与ODS层表结构字段顺序一致!!!

四、开启Kafka主题topic_db_data_evaluation消费者

[root@localhost bin]# ./kafka-console-consumer.sh --bootstrap-server 192.168.0.70:9092  --topic topic_db_data_evaluation  --from-beginning

五、运行测试

1、启动项目

2、消费者输出数据

然后再用Flume采集写入HDFS就行了,不过ODS层表结构需要转变

六、ODS层新表结构

create external table  if not exists  hurys_dc_ods.ods_evaluation(device_no           string        COMMENT '设备编号',source_device_type  string        COMMENT '设备类型',sn                  string        COMMENT '设备序列号 ',model               string        COMMENT '设备型号',create_time         timestamp     COMMENT '创建时间',cycle               int           COMMENT '评价数据周期',lane_no             int           COMMENT '车道编号',lane_type           int           COMMENT '车道类型 0:渠化1:来向2:出口3:去向4:左弯待转区5:直行待行区6:右转专用道99:未定义车道',volume              int           COMMENT '车道内过停止线流量(辆)',queue_len_max       float         COMMENT '车道内最大排队长度(m)',sample_num          int           COMMENT '评价数据计算样本量',stop_avg            float         COMMENT '车道内平均停车次数(次)',delay_avg           float         COMMENT '车道内平均延误时间(s)',pass_rate           float         COMMENT '车道内一次通过率',travel_dist         float         COMMENT '车道内检测行程距离(m)',travel_time_avg     float         COMMENT '车道内平均行程时间'
)
comment '评价数据外部表——静态分区'
partitioned by (day string)
row format delimited fields terminated by ','
stored as SequenceFile
;

七、Flume采集配置文件

八、运行Flume任务,检查HDFS文件、以及ODS表数据

--刷新表分区
msck repair table ods_evaluation;
--查看表分区
show partitions hurys_dc_ods.ods_evaluation;
--查看表数据
select * from hurys_dc_ods.ods_evaluation
where day='2024-09-03';

搞定,这样就不需要在Hive中解析JSON数据了!!!

http://www.yayakq.cn/news/400484/

相关文章:

  • 网站编辑做的准备英文网站如何做seo
  • 南京市建设工程档案馆网站泰州做企业网站
  • 网站建设税收编码百姓装潢上海门店具体地址
  • 中国做网站最好的网站优化排名易下拉效率
  • flash网站怎么做音乐停止wordpress修改上传文件大小
  • 哈尔滨设计网站建设什么平台发广告最有效
  • 建公司网站网站建设颊算
  • 兰州网站制作cheng医疗器械商标
  • 六安市 网站集约化建设做网站最好的公司有哪些
  • 外贸软件哪个好企业seo年度
  • 酒店网站策划书网站建设用哪种语言好
  • 做一个网上商城网站建设费用多少中国建筑建设通的网站
  • 免费app软件下载网站360收录提交入口网址
  • 绵阳辉煌网站建设安徽平台网站建设设计
  • 什么网站可以做装修效果图的dede网站模板页在什么文件夹
  • 多站点wordpress安装网站首页快速收录
  • 北京做彩右影影视公司网站百度云网盘入口
  • 网站建站步骤wordpress每篇文章怎么加关键词
  • 网站建设课程中的收获深圳互联网企业排名
  • 免费站推广网站链接什么是网站的域名
  • 精选聊城做网站的公司东莞好的网站国外站建设价格
  • 如何做网站服务器黑龙江新闻夜航今晚回放
  • 个人网站 怎么备案广东十大广告公司
  • 网站建设硬件环境做ui设计一年后年薪多少
  • 微信建设网站中山建设网站官网
  • 中国空间站名字枣庄高端网站建设
  • 嘉伟网络智能建站个人网站模板 免费
  • wordpress 扒站wordpress 网站logo
  • 泉州专业网站建设公司软件代理网
  • 用html表格做的网站wordpress加百度一下