社交网站平台怎么做,价格网,上海网页设计设计,tinkphp5网站开发C Tensorrt Yolov8 目标检测推理 模型导出代码yolov8.hyolov8.cppcommon.hppCMakeListmain.cpp C tensorrt对yolov8目标检测模型进行推理。 Windows版本下只需要修改common.hpp对文件的判断S_ISREG 和对文件夹的判断S_ISDIR即可#xff0c;非核心代码#xff0c;不调用删掉都… C Tensorrt Yolov8 目标检测推理 模型导出代码yolov8.hyolov8.cppcommon.hppCMakeListmain.cpp  C tensorrt对yolov8目标检测模型进行推理。 Windows版本下只需要修改common.hpp对文件的判断S_ISREG 和对文件夹的判断S_ISDIR即可非核心代码不调用删掉都可以。亲测可行。 模型导出 
python 导出onnx 
from ultralytics import YOLO# Load the YOLOv8 model
model  YOLO(best.pt)# # Export the model to ONNX format
model.export(formatonnx, dynamicFalse, simplifyTrue, imgsz  (640,640), opset12, halfFalse, int8False)  # creates yolov8n.onnxtensorRT自带bin下的trtexec导出engine模型 ## export trt/
(base) xiaoxinxiaoxin:/usr/local/TensorRT-8.6.1.6/bin$ sudo ./trtexec --onnx/home/xiaoxin/Documents/ultralytics-main/best.onnx --saveEngine/home/xiaoxin/Documents/ultralytics-main/best.engine --workspace1024 --fp16# Key	Value	Description
# format	torchscript	format to export to
# imgsz	640	image size as scalar or (h, w) list, i.e. (640, 480)
# keras	False	use Keras for TF SavedModel export
# optimize	False	TorchScript: optimize for mobile
# half	False	FP16 quantization
# int8	False	INT8 quantization
# dynamic	False	ONNX/TF/TensorRT: dynamic axes
# simplify	False	ONNX: simplify model
# opset	None	ONNX: opset version (optional, defaults to latest)
# workspace	4	TensorRT: workspace size (GB)
# nms	False	CoreML: add NMS代码 
yolov8.h 
#ifndef YOLOV8_H
#define YOLOV8_H
#include NvInferPlugin.h
#include common.hpp
#include fstream
using namespace det;#define _PRINT true
// #define BATCHED_NMS
// #define assert(_Expression) ((void)0)class YOLOv8 {
public:explicit YOLOv8(const std::string engine_file_path);~YOLOv8();void                 makePipe(bool warmup  true);void                 copyFromMat(const cv::Mat image);void                 copyFromMat(const cv::Mat image, cv::Size size);void                 letterBox(const cv::Mat image, cv::Mat out, cv::Size size);void                 infer();void                 postprocess(std::vectorObject objs,float                score_thres  0.25f,float                iou_thres    0.65f,int                  topk         100,int                  num_labels   1);static void          draw_objects(const cv::Mat                                image,cv::Mat                                      res,const std::vectorObject                    objs,const std::vectorstd::string               CLASS_NAMES,const std::vectorstd::vectorunsigned int COLORS);public:int                  num_bindings;int                  num_inputs   0;int                  num_outputs  0;std::vectorBinding input_bindings;std::vectorBinding output_bindings;std::vectorvoid*   host_ptrs;std::vectorvoid*   device_ptrs;PreParam pparam;Parameter param;private:nvinfer1::ICudaEngine*       engine   nullptr;nvinfer1::IRuntime*          runtime  nullptr;nvinfer1::IExecutionContext* context  nullptr;cudaStream_t                 stream   nullptr;Logger                       gLogger{nvinfer1::ILogger::Severity::kERROR};
};
#endif  // YOLOV8_Hyolov8.cpp 
#include yolov8.h// init engine model
YOLOv8::YOLOv8(const std::string engine_file_path)
{// 1. make sure this file can be open by binary mode.std::ifstream file(engine_file_path, std::ios::binary);if(!file.good()){if(_PRINT){std::cout  [ERROR] can not open file, please check up your engine file!  std::endl;}return;}// 2. move pointer to the end.file.seekg(0, std::ios::end);// 3. get the location of current pointer.auto size  file.tellg();// 4. move pointer to start.file.seekg(0, std::ios::beg);char* trtModelStream  new char[size];assert(trtModelStream);file.read(trtModelStream, size);file.close();// 5. create runtime object deserialization///    important tip   ///// in order to use initLibNvInferPlugins, link to nvinfer_plugin.so or nvinfer_plugin.dll.// if you have some errors in this method, check up your .so or .dll files. you can put them in program directory.initLibNvInferPlugins(this-gLogger, );this-runtime  nvinfer1::createInferRuntime(this-gLogger);assert(this-runtime ! nullptr);this-engine  this-runtime-deserializeCudaEngine(trtModelStream, size);assert(this-engine ! nullptr);delete[] trtModelStream;// 6. create some space to store intermediate activation values.this-context  this-engine-createExecutionContext();assert(this-context ! nullptr);cudaStreamCreate(this-stream);// 7. get number of input tensor and output tensor.this-num_bindings  this-engine-getNbBindings();// 8. get binding dimensions, this process can support different dimensions.for (int i  0; i  this-num_bindings; i) {Binding            binding;nvinfer1::Dims     dims;nvinfer1::DataType dtype  this-engine-getBindingDataType(i);std::string        name   this-engine-getBindingName(i);binding.name              name;binding.dsize             type_to_size(dtype);bool IsInput  engine-bindingIsInput(i);if (IsInput) {this-num_inputs  1;dims          this-engine-getProfileDimensions(i, 0, nvinfer1::OptProfileSelector::kMAX);binding.size  get_size_by_dims(dims);binding.dims  dims;this-input_bindings.push_back(binding);// set max opt shapethis-context-setBindingDimensions(i, dims);}else {dims          this-context-getBindingDimensions(i);binding.size  get_size_by_dims(dims);binding.dims  dims;this-output_bindings.push_back(binding);this-num_outputs  1;}}
}YOLOv8::~YOLOv8()
{this-context-destroy();this-engine-destroy();this-runtime-destroy();cudaStreamDestroy(this-stream);for (auto ptr : this-device_ptrs) {CHECK(cudaFree(ptr));}for (auto ptr : this-host_ptrs) {CHECK(cudaFreeHost(ptr));}
}// warm up.
void YOLOv8::makePipe(bool warmup)
{for (auto bindings : this-input_bindings) {void* d_ptr;CHECK(cudaMallocAsync(d_ptr, bindings.size * bindings.dsize, this-stream));this-device_ptrs.push_back(d_ptr);}for (auto bindings : this-output_bindings) {void * d_ptr, *h_ptr;size_t size  bindings.size * bindings.dsize;CHECK(cudaMallocAsync(d_ptr, size, this-stream));CHECK(cudaHostAlloc(h_ptr, size, 0));this-device_ptrs.push_back(d_ptr);this-host_ptrs.push_back(h_ptr);}if (warmup) {for (int i  0; i  5; i) {for (auto bindings : this-input_bindings) {size_t size   bindings.size * bindings.dsize;void*  h_ptr  malloc(size);memset(h_ptr, 0, size);CHECK(cudaMemcpyAsync(this-device_ptrs[0], h_ptr, size, cudaMemcpyHostToDevice, this-stream));free(h_ptr);}this-infer();}if(_PRINT){printf(model warmup 5 times\n);}}
}void YOLOv8::letterBox(const cv::Mat image, cv::Mat out, cv::Size size)
{const float inp_h   size.height;const float inp_w   size.width;float       height  image.rows;float       width   image.cols;float r     std::min(inp_h / height, inp_w / width);int   padw  std::round(width * r);int   padh  std::round(height * r);cv::Mat tmp;if ((int)width ! padw || (int)height ! padh) {cv::resize(image, tmp, cv::Size(padw, padh));}else {tmp  image.clone();}float dw  inp_w - padw;float dh  inp_h - padh;dw / 2.0f;dh / 2.0f;int top     int(std::round(dh - 0.1f));int bottom  int(std::round(dh  0.1f));int left    int(std::round(dw - 0.1f));int right   int(std::round(dw  0.1f));cv::copyMakeBorder(tmp, tmp, top, bottom, left, right, cv::BORDER_CONSTANT, {114, 114, 114});cv::dnn::blobFromImage(tmp, out, 1 / 255.f, cv::Size(), cv::Scalar(0, 0, 0), true, false, CV_32F);this-pparam.ratio   1 / r;this-pparam.dw      dw;this-pparam.dh      dh;this-pparam.height  height;this-pparam.width   width;
}void YOLOv8::copyFromMat(const cv::Mat image)
{cv::Mat  nchw;auto    in_binding  this-input_bindings[0];auto     width       in_binding.dims.d[3];auto     height      in_binding.dims.d[2];cv::Size size{width, height};this-letterBox(image, nchw, size);this-context-setBindingDimensions(0, nvinfer1::Dims{4, {1, 3, height, width}});CHECK(cudaMemcpyAsync(this-device_ptrs[0], nchw.ptrfloat(), nchw.total() * nchw.elemSize(), cudaMemcpyHostToDevice, this-stream));
}void YOLOv8::copyFromMat(const cv::Mat image, cv::Size size)
{cv::Mat nchw;this-letterBox(image, nchw, size);this-context-setBindingDimensions(0, nvinfer1::Dims{4, {1, 3, size.height, size.width}});CHECK(cudaMemcpyAsync(this-device_ptrs[0], nchw.ptrfloat(), nchw.total() * nchw.elemSize(), cudaMemcpyHostToDevice, this-stream));
}void YOLOv8::infer()
{this-context-enqueueV2(this-device_ptrs.data(), this-stream, nullptr);for (int i  0; i  this-num_outputs; i) {size_t osize  this-output_bindings[i].size * this-output_bindings[i].dsize;CHECK(cudaMemcpyAsync(this-host_ptrs[i], this-device_ptrs[i  this-num_inputs], osize, cudaMemcpyDeviceToHost, this-stream));}cudaStreamSynchronize(this-stream);
}void YOLOv8::postprocess(std::vectorObject objs, float score_thres, float iou_thres, int topk, int num_labels)
{if(param.setPam){score_thres  param.score_thres;iou_thres  param.iou_thres;topk  param.topk;num_labels  param.num_labels;}objs.clear();auto num_channels  this-output_bindings[0].dims.d[1];auto num_anchors   this-output_bindings[0].dims.d[2];auto dw      this-pparam.dw;auto dh      this-pparam.dh;auto width   this-pparam.width;auto height  this-pparam.height;auto ratio   this-pparam.ratio;std::vectorcv::Rect bboxes;std::vectorfloat    scores;std::vectorint      labels;std::vectorint      indices;cv::Mat output  cv::Mat(num_channels, num_anchors, CV_32F, static_castfloat*(this-host_ptrs[0]));output          output.t();for (int i  0; i  num_anchors; i) {auto  row_ptr     output.row(i).ptrfloat();auto  bboxes_ptr  row_ptr;auto  scores_ptr  row_ptr  4;auto  max_s_ptr   std::max_element(scores_ptr, scores_ptr  num_labels);float score       *max_s_ptr;if (score  score_thres) {float x  *bboxes_ptr - dw;float y  *bboxes_ptr - dh;float w  *bboxes_ptr;float h  *bboxes_ptr;float x0  clamp((x - 0.5f * w) * ratio, 0.f, width);float y0  clamp((y - 0.5f * h) * ratio, 0.f, height);float x1  clamp((x  0.5f * w) * ratio, 0.f, width);float y1  clamp((y  0.5f * h) * ratio, 0.f, height);int              label  max_s_ptr - scores_ptr;cv::Rect_float bbox;bbox.x       x0;bbox.y       y0;bbox.width   x1 - x0;bbox.height  y1 - y0;bboxes.push_back(bbox);labels.push_back(label);scores.push_back(score);}}#ifdef BATCHED_NMScv::dnn::NMSBoxesBatched(bboxes, scores, labels, score_thres, iou_thres, indices);
#elsecv::dnn::NMSBoxes(bboxes, scores, score_thres, iou_thres, indices);
#endifint cnt  0;for (auto i : indices) {if (cnt  topk) {break;}Object obj;obj.rect   bboxes[i];obj.prob   scores[i];obj.label  labels[i];objs.push_back(obj);cnt  1;}
}void YOLOv8::draw_objects(const cv::Mat                                image,cv::Mat                                      res,const std::vectorObject                    objs,const std::vectorstd::string               CLASS_NAMES,const std::vectorstd::vectorunsigned int COLORS)
{res  image.clone();for (auto obj : objs) {cv::Scalar color  cv::Scalar(COLORS[obj.label][0], COLORS[obj.label][1], COLORS[obj.label][2]);cv::rectangle(res, obj.rect, color, 2);char text[256];sprintf(text, %s %.1f%%, CLASS_NAMES[obj.label].c_str(), obj.prob * 100);int      baseLine    0;int x  (int)obj.rect.x;int y  (int)obj.rect.y  1;y  res.rows ? res.rows : y;/ you can choose whether you need a background for text. // cv::Size label_size  cv::getTextSize(text, cv::FONT_HERSHEY_SIMPLEX, 0.4, 1, baseLine);// cv::rectangle(res, cv::Rect(x, y, label_size.width, label_size.height  baseLine), {0, 0, 255}, -1);cv::putText(res, text, cv::Point(x, y), cv::FONT_HERSHEY_SIMPLEX, 0.4, {0, 0, 255}, 1);}
}common.hpp 
#ifndef COMMON_HPP
#define COMMON_HPP
#include NvInfer.h
#include opencv2/opencv.hpp
#include sys/stat.h
#include unistd.h#define CHECK(call)                                                                                                    \do {                                                                                                               \const cudaError_t error_code  call;                                                                           \if (error_code ! cudaSuccess) {                                                                               \printf(CUDA Error:\n);                                                                                   \printf(    File:       %s\n, __FILE__);                                                                  \printf(    Line:       %d\n, __LINE__);                                                                  \printf(    Error code: %d\n, error_code);                                                                \printf(    Error text: %s\n, cudaGetErrorString(error_code));                                            \exit(1);                                                                                                   \}                                                                                                              \} while (0)class Logger: public nvinfer1::ILogger 
{
public:nvinfer1::ILogger::Severity reportableSeverity;explicit Logger(nvinfer1::ILogger::Severity severity  nvinfer1::ILogger::Severity::kINFO):reportableSeverity(severity){}void log(nvinfer1::ILogger::Severity severity, const char* msg) noexcept override{if (severity  reportableSeverity) {return;}switch (severity) {case nvinfer1::ILogger::Severity::kINTERNAL_ERROR:std::cerr  INTERNAL_ERROR: ;break;case nvinfer1::ILogger::Severity::kERROR:std::cerr  ERROR: ;break;case nvinfer1::ILogger::Severity::kWARNING:std::cerr  WARNING: ;break;case nvinfer1::ILogger::Severity::kINFO:std::cerr  INFO: ;break;default:std::cerr  VERBOSE: ;break;}std::cerr  msg  std::endl;}
};inline int get_size_by_dims(const nvinfer1::Dims dims)
{int size  1;for (int i  0; i  dims.nbDims; i) {size * dims.d[i];}return size;
}inline int type_to_size(const nvinfer1::DataType dataType)
{switch (dataType) {case nvinfer1::DataType::kFLOAT:return 4;case nvinfer1::DataType::kHALF:return 2;case nvinfer1::DataType::kINT32:return 4;case nvinfer1::DataType::kINT8:return 1;case nvinfer1::DataType::kBOOL:return 1;default:return 4;}
}inline static float clamp(float val, float min, float max)
{return val  min ? (val  max ? val : max) : min;
}inline bool IsPathExist(const std::string path)
{if (access(path.c_str(), 0)  F_OK) {return true;}return false;
}inline bool IsFile(const std::string path)
{if (!IsPathExist(path)) {printf(%s:%d %s not exist\n, __FILE__, __LINE__, path.c_str());return false;}struct stat buffer;return (stat(path.c_str(), buffer)  0  S_ISREG(buffer.st_mode));
}inline bool IsFolder(const std::string path)
{if (!IsPathExist(path)) {return false;}struct stat buffer;return (stat(path.c_str(), buffer)  0  S_ISDIR(buffer.st_mode));
}namespace det 
{struct Binding {size_t         size   1;size_t         dsize  1;nvinfer1::Dims dims;std::string    name;};struct Object {cv::Rect_float rect;int              label  0;float            prob   0.0;};struct PreParam {float ratio   1.0f;float dw      0.0f;float dh      0.0f;float height  0;float width   0;};struct Parameter{bool setPam  false;float score_thres  0.25f;float iou_thres  0.65f;int topk  100;int num_labels  1;};
}  // namespace det
#endif  // COMMON_HPP 
CMakeList 
cmake_minimum_required(VERSION 3.1)set(CMAKE_CUDA_ARCHITECTURES 60 61 62 70 72 75 86 89 90)
set(CMAKE_CUDA_COMPILER /usr/local/cuda/bin/nvcc)project(yolov8 LANGUAGES CXX CUDA)set(CMAKE_CXX_FLAGS ${CMAKE_CXX_FLAGS} -stdc14 -O3)
set(CMAKE_CXX_STANDARD 14)
set(CMAKE_BUILD_TYPE Release)
option(CUDA_USE_STATIC_CUDA_RUNTIME OFF)# CUDA
find_package(CUDA REQUIRED)
message(STATUS CUDA Libs: \n${CUDA_LIBRARIES}\n)
get_filename_component(CUDA_LIB_DIR ${CUDA_LIBRARIES} DIRECTORY)
message(STATUS CUDA Headers: \n${CUDA_INCLUDE_DIRS}\n)# OpenCV
find_package(OpenCV REQUIRED)
message(STATUS OpenCV Libs: \n${OpenCV_LIBS}\n)
message(STATUS OpenCV Libraries: \n${OpenCV_LIBRARIES}\n)
message(STATUS OpenCV Headers: \n${OpenCV_INCLUDE_DIRS}\n)# TensorRT
set(TensorRT_INCLUDE_DIRS /usr/include/x86_64-linux-gnu)
set(TensorRT_LIBRARIES /usr/lib/x86_64-linux-gnu)message(STATUS TensorRT Libs: \n${TensorRT_LIBRARIES}\n)
message(STATUS TensorRT Headers: \n${TensorRT_INCLUDE_DIRS}\n)list(APPEND INCLUDE_DIRS${CUDA_INCLUDE_DIRS}${OpenCV_INCLUDE_DIRS}${TensorRT_INCLUDE_DIRS}include)list(APPEND ALL_LIBS${CUDA_LIBRARIES}${CUDA_LIB_DIR}${OpenCV_LIBRARIES}${TensorRT_LIBRARIES})include_directories(${INCLUDE_DIRS})add_executable(${PROJECT_NAME}main.cppyolov8.cppcommon.hpp)target_link_directories(${PROJECT_NAME} PUBLIC ${ALL_LIBS})
target_link_libraries(${PROJECT_NAME} PRIVATE nvinfer nvinfer_plugin cudart ${OpenCV_LIBS})if (${OpenCV_VERSION} VERSION_GREATER_EQUAL 4.7.0)message(STATUS Build with -DBATCHED_NMS)add_definitions(-DBATCHED_NMS)
endif () 
main.cpp 
#include chrono
#include opencv2/opencv.hpp
#include yolov8.h
#include iostreamusing namespace std;const std::vectorstd::string CLASS_NAMES  {blackPoint};const std::vectorstd::vectorunsigned int COLORS  {{0, 0, 255}};int main(int argc, char** argv)
{// cuda:0cudaSetDevice(0);const std::string engine_file_path{/home/xiaoxin/Documents/ultralytics-main/last.engine};const std::string path{/home/xiaoxin/Documents/ultralytics-main/datasets/Tray/labelImg};std::vectorstd::string imagePathList;bool                     isVideo{false};auto yolov8  new YOLOv8(engine_file_path);yolov8-makePipe(true);if (IsFile(path)){std::string suffix  path.substr(path.find_last_of(.)  1);if (suffix  jpg || suffix  jpeg || suffix  png) {imagePathList.push_back(path);}else if (suffix  mp4 || suffix  avi || suffix  m4v || suffix  mpeg || suffix  mov|| suffix  mkv) {isVideo  true;}else {printf(suffix %s is wrong !!!\n, suffix.c_str());std::abort();}}else if (IsFolder(path)) {cv::glob(path  /*.png, imagePathList);}cv::Mat  res, image;cv::Size size         cv::Size{640, 640};yolov8-param.setPam  true;yolov8-param.num_labels   1;yolov8-param.topk         100;yolov8-param.score_thres  0.25f;yolov8-param.iou_thres    0.35f; // 0.65fstd::vectorObject objs;cv::namedWindow(result, cv::WINDOW_AUTOSIZE);if (isVideo) {cv::VideoCapture cap(path);if (!cap.isOpened()) {printf(can not open %s\n, path.c_str());return -1;}while (cap.read(image)) {objs.clear();yolov8-copyFromMat(image, size);auto start  std::chrono::system_clock::now();yolov8-infer();auto end  std::chrono::system_clock::now();yolov8-postprocess(objs);yolov8-draw_objects(image, res, objs, CLASS_NAMES, COLORS);auto tc  (double)std::chrono::duration_caststd::chrono::microseconds(end - start).count() / 1000.;printf(cost %2.4lf ms\n, tc);cv::imshow(result, res);if (cv::waitKey(10)  q) {break;}}}else {for (auto path : imagePathList) {objs.clear();image  cv::imread(path);yolov8-copyFromMat(image, size);auto start  std::chrono::system_clock::now();yolov8-infer();yolov8-postprocess(objs);yolov8-draw_objects(image, res, objs, CLASS_NAMES, COLORS);auto end  std::chrono::system_clock::now();auto tc  (double)std::chrono::duration_caststd::chrono::microseconds(end - start).count() / 1000.;printf(cost %2.4lf ms\n, tc);resize(res, res, cv::Size(0,0), 3, 3);cv::imshow(result, res);cv::waitKey(0);}}cv::destroyAllWindows();delete yolov8;return 0;
}