当前位置: 首页 > news >正文

网站建设案例图片免费的个人简历模板电子版

网站建设案例图片,免费的个人简历模板电子版,北京建设银行官网招聘网站,wordpress 多说 社交登陆每个电子商务数据分析师必须掌握的一项数据聚类技能 如果你是一名在电子商务公司工作的数据分析师,从客户数据中挖掘潜在价值,来提高客户留存率很可能就是你的工作任务之一。 然而,客户数据是巨大的,每个客户的行为都不一样。20…

每个电子商务数据分析师必须掌握的一项数据聚类技能

如果你是一名在电子商务公司工作的数据分析师,从客户数据中挖掘潜在价值,来提高客户留存率很可能就是你的工作任务之一。

然而,客户数据是巨大的,每个客户的行为都不一样。2020年3月收购的客户A与2020年5月收购的客户B表现出不同的行为。因此,有必要将客户分为不同的群组,然后调查每个群组在一段时间内的行为。这就是所谓的同期群分析

同期群分析是了解一个特殊客户群体在一段时间内的行为的数据分析技术。

在这篇文章中,不会详细介绍同期群分析的理论。这篇文章更多的是告诉你如何将客户分成不同的群组,并在一段时间内观察每个群组的留存率。

导入数据和python库

import pandas as pd  
import matplotlib.pyplot as plt  
import seaborn as sns  
df = pd.read_csv('sales_2018-01-01_2019-12-31.csv')  
df  

技术交流

技术要学会分享、交流,不建议闭门造车。一个人走的很快、一堆人可以走的更远。

本文来自技术群粉丝分享整理,文章源码、数据、技术交流,均可加交流群获取,群友已超过2000人,添加时最好的备注方式为:来源+兴趣方向,方便找到志同道合的朋友。

方式①、添加微信号:pythoner666,备注:来自CSDN +备注来意
方式②、微信搜索公众号:Python学习与数据挖掘,后台回复:加群

在这里插入图片描述

分离新老客户

first_time = df.loc[df['customer_type'] == 'First-time',]  
final = df.loc[df['customer_id'].isin(first_time['customer_id'].values)]  

在这里,不能简单地选择df.loc[df['customer_type']],因为在这个数据中,在customer_type列下,First_time指的是新客户,而Returning指的是老客户。因此,如果我在2019年12月31日第一次购买,数据会显示我在2019年12月31日是新客户,但在我第二次、第三次…时是返回客户。同期群分析着眼于新客户和他们的后续购买行为。因此,如果我们简单地使用df.loc[df['customer_type']=='First-time',],我们就会忽略新客户的后续购买,这不是分析同期群行为的正确方法。

因此,这里所需要做的是,首先创建一个所有第一次的客户列表,并将其存储为first_time。然后从原始客户数据框df中只选择那些ID在first_time客户组内的客户。通过这样做,我们可以确保我们获得的数据只有第一次的客户和他们后来的购买行为。

现在,我们删除customer_type列,因为它已经没有必要了。同时,将日期列转换成正确的日期时间格式

final = final.drop(columns = ['customer_type'])  
final['day']= pd.to_datetime(final['day'], dayfirst=True)  

按客户ID排序,然后是日期

final = final.drop(columns = ['customer_type'])  
final['day']= pd.to_datetime(final['day'], dayfirst=True)  

定义一些函数

def purchase_rate(customer_id):  purchase_rate = [1]  counter = 1  for i in range(1,len(customer_id)):  if customer_id[i] != customer_id[i-1]:  purchase_rate.append(1)  counter = 1  else:  counter += 1  purchase_rate.append(counter)  return purchase_rate  
def join_date(date, purchase_rate):  join_date = list(range(len(date)))  for i in range(len(purchase_rate)):   if purchase_rate[i] == 1:  join_date[i] = date[i]  else:  join_date[i] = join_date[i-1]  return join_date  
def age_by_month(purchase_rate, month, year, join_month, join_year):  age_by_month = list(range(len(year)))  for i in range(len(purchase_rate)):  if purchase_rate[i] == 1:  age_by_month[i] = 0  else:  if year[i] == join_year[i]:  age_by_month[i] = month[i] - join_month[i]  else:  age_by_month[i] = month[i] - join_month[i] + 12*(year[i]-join_year[i])  return age_by_month  
  • purchase_rate函数将决定这是否是每个客户的第二次、第三次、第四次购买。

  • join_date函数允许确定客户加入的日期。

  • age_by_month函数提供了从客户当前购买到第一次购买的多少个月。

现在输入已经准备好了,接下来创建群组。

创建群组

final['month'] =pd.to_datetime(final['day']).dt.month  
final['Purchase Rate'] = purchase_rate(final['customer_id'])  
final['Join Date'] = join_date(final['day'], final['Purchase Rate'])  
final['Join Date'] = pd.to_datetime(final['Join Date'], dayfirst=True)  
final['cohort'] = pd.to_datetime(final['Join Date']).dt.strftime('%Y-%m')  
final['year'] = pd.to_datetime(final['day']).dt.year  
final['Join Date Month'] = pd.to_datetime(final['Join Date']).dt.month  
final['Join Date Year'] = pd.to_datetime(final['Join Date']).dt.year  

final['Age by month'] = age_by_month(final['Purchase Rate'],   final['month'],  final['year'],  final['Join Date Month'],  final['Join Date Year'])  

cohorts = final.groupby(['cohort','Age by month']).nunique()  
cohorts = cohorts.customer_id.to_frame().reset_index()   # convert series to frame  
cohorts = pd.pivot_table(cohorts, values = 'customer_id',index = 'cohort', columns= 'Age by month')  
cohorts.replace(np.nan, '',regex=True)  

**如何解释这个表格:**以群组2018-01为例。在2018年1月,有462名新客户。在这462人中,121名客户在2018年2月回来购买,125名在2018年3月购买,以此类推。

转换为群组百分比

for i in range(len(cohorts)-1):  cohorts[i+1] = cohorts[i+1]/cohorts[0]  
cohorts[0] = cohorts[0]/cohorts[0]  

可视化

cohorts_t = cohorts.transpose()  
cohorts_t[cohorts_t.columns].plot(figsize=(10,5))  
sns.set(style='whitegrid')  
plt.figure(figsize=(20, 15))  
plt.title('Cohorts: User Retention')  
sns.set(font_scale = 0.5) # font size  
sns.heatmap(cohorts, mask=cohorts.isnull(),  
cmap="Blues",  
annot=True, fmt='.01%')  
plt.show()  

就这样吧。希望你们喜欢并从这篇文章中获得一些对你有用的东西。

http://www.yayakq.cn/news/85234/

相关文章:

  • 怎么用手机自己做网站淘宝购物返利网站建设app
  • 展示型网站功能做网站是怎样赚钱
  • 网站诚信备案专业建站公司怎么收费
  • 做网站需要雇什么人新建的网站可以百度推广
  • 外贸网站推广和建站导购网站怎么推广
  • 鄂温克族网站建设做影视免费网站违法吗
  • 网站建设类岗位杭州招聘工作
  • 美丽寮步网站建设高性能wordpress友链页面
  • 建设电商网站的技术可行性伪网站建站
  • 安康市网站建设公司网站开发技术选择
  • 实验中心网站建设的调查问卷官方网站拼多多
  • 静态网站 动态丝路建设网站
  • 网站是什么意思例如中装建设集团有限公司
  • 免费网络推广网站大全做网站建设的上市公司有哪些
  • 电影微网站开发太原市本地网站
  • 网站不让百度收录wordpress页面类型
  • 采集网站图片广州红盾信息门户网站
  • 伯爵手表网站公司宣传片制作公司
  • 企业网站备案代理商沈阳建设工程信息网官网新网站
  • 黄陂建设网站如何知道一个网站用什么建设的
  • 旅游门户网站系统本地装修网
  • 开网站需要多少钱wordpress文章加载特效
  • 旅游商业网站策划书做美容有哪些网站
  • 帮人做推广的网站绵阳网站建设开发
  • 张店网站建设定制wordpress添加插件
  • 做翻译 英文网站科大讯飞哪些做教学资源的网站
  • 网站建设平台推荐自助建站上建的网站免费吗
  • 电商网站建设服务备案网站有哪些
  • 百度官网网站登录html 网站建设中
  • 怎样做投资与理财网站汕头网站建设模块