当前位置: 首页 > news >正文

网站建设中倒计时源码宣传片拍摄协议

网站建设中倒计时源码,宣传片拍摄协议,傻瓜app制作开发,网站建设模板怎么直接套XGBoost 主要结合了大量的回归树和一个小的学习率。在这种情况下,早期添加的树是重要的,而晚期添加的树是不重要的。 Vinayak 和 Gilad-Bachrach 提出了一种将深度神经网络社区的 dropout 技术应用于梯度提升树的新方法,并在某些情况下报告了…

XGBoost 主要结合了大量的回归树和一个小的学习率。在这种情况下,早期添加的树是重要的,而晚期添加的树是不重要的。

Vinayak 和 Gilad-Bachrach 提出了一种将深度神经网络社区的 dropout 技术应用于梯度提升树的新方法,并在某些情况下报告了更好的结果

以下是新的树增强器 dart 的说明。

原始论文

Rashmi Korlakai Vinayak, Ran Gilad-Bachrach。“DART: Dropouts meet Multiple Additive Regression Trees.” [arXiv]。

特性

  • 通过删除树来解决过拟合问题。
    • 可以阻止不重要的普通树(以纠正普通错误)

由于训练中引入的随机性,可以期待以下一些差异:

  • 由于随机丢弃dropout会阻止使用预测缓冲区,因此训练可能比 gbtree

  • 由于随机性,早停Early-stop可能不稳定

工作原理

  • 在第 m m m训练轮次中,假设 k k k棵树被选中丢弃。

  • D = ∑ i ∈ K F i D = \sum_{i \in \mathbf{K}} F_i D=iKFi为被丢弃树的叶节点分数, F m = η F ~ m F_m = \eta \tilde{F}_m Fm=ηF~m为新树的叶节点分数。

  • 目标函数如下:

O b j = ∑ j = 1 n L ( y j , y ^ j m − 1 − D j + F ~ m ) Ω ( F ~ m ) . \mathrm{Obj} = \sum_{j=1}^n L \left( y_j, \hat{y}_j^{m-1} - D_j + \tilde{F}_m \right)\Omega \left( \tilde{F}_m \right). Obj=j=1nL(yj,y^jm1Dj+F~m)Ω(F~m).

  • D D D F m F_m Fm是超调,因此使用缩放因子

y ^ j m = ∑ i ∉ K F i + a ( ∑ i ∈ K F i + b F m ) . \hat{y}_j^m = \sum_{i \not\in \mathbf{K}} F_i + a \left( \sum_{i \in \mathbf{K}} F_i + b F_m \right) . y^jm=iKFi+a(iKFi+bFm).

参数

Booster dart 继承自 gbtree booster,因此支持 gbtree 的所有参数,比如 etagammamax_depth 等。

以下是额外的参数:

  • sample_type:采样算法的类型。

    • uniform:(默认)以均匀方式选择要删除的树。
    • weighted:以权重比例选择要删除的树。
  • normalize_type:规范化算法的类型。

    • tree:(默认)新树的权重与每个被删除的树相同。

      a ( ∑ i ∈ K F i + 1 k F m ) = a ( ∑ i ∈ K F i + η k F ~ m ) ∼ a ( 1 + η k ) D = a k + η k D = D , a = k k + η \begin{split}a \left( \sum_{i \in \mathbf{K}} F_i + \frac{1}{k} F_m \right) &= a \left( \sum_{i \in \mathbf{K}} F_i + \frac{\eta}{k} \tilde{F}_m \right) \\ &\sim a \left( 1 + \frac{\eta}{k} \right) D \\ &= a \frac{k + \eta}{k} D = D , \\ &\quad a = \frac{k}{k + \eta}\end{split} a(iKFi+k1Fm)=a(iKFi+kηF~m)a(1+kη)D=akk+ηD=D,a=k+ηk

    • forest:新树的权重等于被删除的树的权重之和(森林)。

      a ( ∑ i ∈ K F i + F m ) = a ( ∑ i ∈ K F i + η F ~ m ) ∼ a ( 1 + η ) D = a ( 1 + η ) D = D , a = 1 1 + η . \begin{split}a \left( \sum_{i \in \mathbf{K}} F_i + F_m \right) &= a \left( \sum_{i \in \mathbf{K}} F_i + \eta \tilde{F}_m \right) \\ &\sim a \left( 1 + \eta \right) D \\ &= a (1 + \eta) D = D , \\ &\quad a = \frac{1}{1 + \eta} .\end{split} a(iKFi+Fm)=a(iKFi+ηF~m)a(1+η)D=a(1+η)D=D,a=1+η1.

  • dropout_rate: 丢弃率。

    • 范围:[0.0, 1.0]
  • skip_dropout: 跳过丢弃的概率。

    • 如果跳过了dropout,新树将以与 gbtree 相同的方式添加。
    • 范围:[0.0, 1.0]

示例

import xgboost as xgb# read in data
dtrain = xgb.DMatrix('./xgboost/demo/data/agaricus.txt.train?format=libsvm')
dtest = xgb.DMatrix('./xgboost/demo/data/agaricus.txt.test?format=libsvm')# specify parameters via map
param = {'booster': 'dart','max_depth': 5, 'learning_rate': 0.1,'objective': 'binary:logistic','sample_type': 'uniform','normalize_type': 'tree','rate_drop': 0.1,'skip_drop': 0.5}num_round = 50
bst = xgb.train(param, dtrain, num_round)
preds = bst.predict(dtest)

参考

  • https://xgboost.readthedocs.io/en/latest/tutorials/dart.html
  • https://arxiv.org/abs/1505.01866
http://www.yayakq.cn/news/55937/

相关文章:

  • 外贸网站怎么做优化适合大学生举办的活动策划
  • 网站开发专业建设网页设计素材制作
  • 学网站开发应该学什么访问域名
  • 用户体验好的网站国外网站域名
  • 网站建设项目流程手机网站有什么要求
  • 在线设计工具的网站怎么做衡水网站建费用
  • 如何自建购物网站电子商务网站开发实验报告
  • 网站开发 安全周到的网站建站
  • 网上购物有哪些网站?如何快速推广网上国网
  • 专注网站建设公司手机优化软件
  • 做网站比较好的公司有哪些建网站的方案
  • 网页制作模板报价模板哈尔滨网络建设网络优化
  • 越秀免费网站建设怎么把百度地图放到网站上
  • 河北seo网站优化公司wordpress 替换图片
  • 物流行业网站源码电子商务公司名称大全集最新
  • 腾飞网站建设手机温州网
  • 做画找图网站seo北京网站推广
  • 重庆城乡建设部网站首页改革网首页
  • 刷网站软件wordpress 安装教程
  • 西安做网站公司必达广州市公司网站建设价格
  • 重庆网站搭建哪里可以做自豪的使用wordpress找不到代码
  • 厦门网站注册与网页设计公司网站必须天天更新吗
  • 免费网站免费进入在线安康市网站建设公司
  • 用内网穿透做网站可以被收录吗外贸网络营销该如何做
  • 南昌房产网官方网站wordpress兼容html5
  • 网站建设丷金手指专业十五wordpress只显示标题插件
  • 直播网站开发源码下载网站底部空白
  • 湖南省建设厅网站首页seo是什么岗位简称
  • 湖南网站模板建站制作网站页面怎么做
  • 爱玖货源站360免费wifi无法在win10下正常运行