当前位置: 首页 > news >正文

口碑好网站制作公司哪家好优酷网站模板下载

口碑好网站制作公司哪家好,优酷网站模板下载,外包公司辞退员工补偿标准,佛山个人网站建设1. 已有工作的思路以及不足之处(existing work)有哪些? 已有工作主要包括以下几类: GAN反转方法:通过优化潜在向量或训练编码器将图像映射到GAN的潜在空间,但这些方法不适用于扩散模型。 DDIM反转&#x…

1. 已有工作的思路以及不足之处(existing work)有哪些?

已有工作主要包括以下几类:

  • GAN反转方法:通过优化潜在向量或训练编码器将图像映射到GAN的潜在空间,但这些方法不适用于扩散模型。

  • DDIM反转适用于无条件扩散模型,但在文本引导扩散模型中,分类器自由引导会放大累积误差,导致重建质量下降

  • 文本反转和模型调优:如Textual Inversion和Dreambooth,通过优化文本嵌入或模型权重来适应特定图像,但前者编辑能力有限,后者需要为每张图像复制整个模型,效率低下。

  • 基于掩码的编辑方法:如Blended Diffusion和Stable Diffusion Inpaint,需要用户提供精确掩码,限制了编辑的灵活性和自然性。

不足之处:

  • 现有方法无法同时实现高保真重建和灵活的文本编辑。

  • 需要用户干预(如提供掩码)或复杂的模型调优,效率低且难以推广。

2.  作者的洞见(insight)是什么?

作者的洞见主要有两点:

  1. 关键反转(Pivotal Inversion):DDIM反转在分类器自由引导下效果不佳,但可以作为优化的起点(即“关键点”),通过围绕这一关键点进行局部优化,能够高效实现高保真重建。

  2. 空文本优化(Null-text Optimization):分类器自由引导的结果受无条件预测的影响很大,因此优化用于无条件预测的空文本嵌入(而非条件文本嵌入或模型权重),可以在保留模型编辑能力的同时实现高质量重建。

3. 解决方法的基本思想(basic idea)是什么?

解决方法的基本思想包括两个核心组件:

  1. 关键反转

    • 首先使用DDIM反转(无分类器自由引导)生成初始噪声轨迹(关键点)。

    • 围绕这一轨迹进行优化,确保重建图像接近原始图像,同时保留编辑能力。

  2. 空文本优化

    • 优化用于无条件预测的空文本嵌入(替换默认的空文本嵌入),保持模型权重和条件文本嵌入不变。

    • 通过逐时间步优化空文本嵌入,进一步提升重建质量。

Abstrct:

Recent large-scale text-guided diffusion models provide powerful image generation capabilities. Currently, a massive effort is given to enable the modification of these images using text only as means to offer intuitive and versatile editing tools. To edit a real image using these state-of-the-art tools, one must first invert the image with a meaningful text prompt into the pretrained model's domain. In this paper, we introduce an accurate inversion technique and thus facilitate an intuitive text-based modification of the image. Our proposed inversion consists of two key novel components: (i) Pivotal inversion for diffusion models. While current methods aim at mapping random noise samples to a single input image, we use a single pivotal noise vector for each timestamp and optimize around it. We demonstrate that a direct DDIM inversion is inadequate on its own, but does provide a rather good anchor for our optimization. (ii) Null-text optimization, where we only modify the unconditional textual embedding that is used for classifier-free guidance, rather than the input text embedding. This allows for keeping both the model weights and the conditional embedding intact and hence enables applying prompt-based editing while avoiding the cumbersome tuning of the model's weights. Our null-text inversion, based on the publicly available Stable Diffusion model, is extensively evaluated on a variety of images and various prompt editing, showing high-fidelity editing of real images.

原文链接:Null-text Inversion for Editing Real Images using Guided Diffusion Models 

架构图:

class NullInversion:def prev_step(self, model_output: Union[torch.FloatTensor, np.ndarray], timestep: int, sample: Union[torch.FloatTensor, np.ndarray]):prev_timestep = timestep - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_stepsalpha_prod_t = self.scheduler.alphas_cumprod[timestep]alpha_prod_t_prev = self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprodbeta_prod_t = 1 - alpha_prod_tpred_original_sample = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5pred_sample_direction = (1 - alpha_prod_t_prev) ** 0.5 * model_outputprev_sample = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_directionreturn prev_sampledef next_step(self, model_output: Union[torch.FloatTensor, np.ndarray], timestep: int, sample: Union[torch.FloatTensor, np.ndarray]):timestep, next_timestep = min(timestep - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps, 999), timestepalpha_prod_t = self.scheduler.alphas_cumprod[timestep] if timestep >= 0 else self.scheduler.final_alpha_cumprodalpha_prod_t_next = self.scheduler.alphas_cumprod[next_timestep]beta_prod_t = 1 - alpha_prod_tnext_original_sample = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5next_sample_direction = (1 - alpha_prod_t_next) ** 0.5 * model_outputnext_sample = alpha_prod_t_next ** 0.5 * next_original_sample + next_sample_directionreturn next_sampledef get_noise_pred_single(self, latents, t, context):noise_pred = self.model.unet(latents, t, encoder_hidden_states=context)["sample"]return noise_preddef get_noise_pred(self, latents, t, is_forward=True, context=None):latents_input = torch.cat([latents] * 2)if context is None:context = self.contextguidance_scale = 1 if is_forward else GUIDANCE_SCALEnoise_pred = self.model.unet(latents_input, t, encoder_hidden_states=context)["sample"]noise_pred_uncond, noise_prediction_text = noise_pred.chunk(2)noise_pred = noise_pred_uncond + guidance_scale * (noise_prediction_text - noise_pred_uncond)if is_forward:latents = self.next_step(noise_pred, t, latents)else:latents = self.prev_step(noise_pred, t, latents)return latents@torch.no_grad()def latent2image(self, latents, return_type='np'):latents = 1 / 0.18215 * latents.detach()image = self.model.vae.decode(latents)['sample']if return_type == 'np':image = (image / 2 + 0.5).clamp(0, 1)image = image.cpu().permute(0, 2, 3, 1).numpy()[0]image = (image * 255).astype(np.uint8)return image@torch.no_grad()def image2latent(self, image):with torch.no_grad():if type(image) is Image:image = np.array(image)if type(image) is torch.Tensor and image.dim() == 4:latents = imageelse:image = torch.from_numpy(image).float() / 127.5 - 1image = image.permute(2, 0, 1).unsqueeze(0).to(device)latents = self.model.vae.encode(image)['latent_dist'].meanlatents = latents * 0.18215return latents@torch.no_grad()def init_prompt(self, prompt: str):uncond_input = self.model.tokenizer([""], padding="max_length", max_length=self.model.tokenizer.model_max_length,return_tensors="pt")uncond_embeddings = self.model.text_encoder(uncond_input.input_ids.to(self.model.device))[0]text_input = self.model.tokenizer([prompt],padding="max_length",max_length=self.model.tokenizer.model_max_length,truncation=True,return_tensors="pt",)text_embeddings = self.model.text_encoder(text_input.input_ids.to(self.model.device))[0]self.context = torch.cat([uncond_embeddings, text_embeddings])self.prompt = prompt@torch.no_grad()def ddim_loop(self, latent):uncond_embeddings, cond_embeddings = self.context.chunk(2)all_latent = [latent]latent = latent.clone().detach()for i in range(NUM_DDIM_STEPS):t = self.model.scheduler.timesteps[len(self.model.scheduler.timesteps) - i - 1]noise_pred = self.get_noise_pred_single(latent, t, cond_embeddings)latent = self.next_step(noise_pred, t, latent)all_latent.append(latent)return all_latent@propertydef scheduler(self):return self.model.scheduler@torch.no_grad()def ddim_inversion(self, image):latent = self.image2latent(image)image_rec = self.latent2image(latent)ddim_latents = self.ddim_loop(latent)return image_rec, ddim_latentsdef null_optimization(self, latents, num_inner_steps, epsilon):uncond_embeddings, cond_embeddings = self.context.chunk(2)uncond_embeddings_list = []latent_cur = latents[-1]bar = tqdm(total=num_inner_steps * NUM_DDIM_STEPS)for i in range(NUM_DDIM_STEPS):uncond_embeddings = uncond_embeddings.clone().detach()uncond_embeddings.requires_grad = Trueoptimizer = Adam([uncond_embeddings], lr=1e-2 * (1. - i / 100.))latent_prev = latents[len(latents) - i - 2]t = self.model.scheduler.timesteps[i]with torch.no_grad():noise_pred_cond = self.get_noise_pred_single(latent_cur, t, cond_embeddings)for j in range(num_inner_steps):noise_pred_uncond = self.get_noise_pred_single(latent_cur, t, uncond_embeddings)noise_pred = noise_pred_uncond + GUIDANCE_SCALE * (noise_pred_cond - noise_pred_uncond)latents_prev_rec = self.prev_step(noise_pred, t, latent_cur)loss = nnf.mse_loss(latents_prev_rec, latent_prev)optimizer.zero_grad()loss.backward()optimizer.step()loss_item = loss.item()bar.update()if loss_item < epsilon + i * 2e-5:breakfor j in range(j + 1, num_inner_steps):bar.update()uncond_embeddings_list.append(uncond_embeddings[:1].detach())with torch.no_grad():context = torch.cat([uncond_embeddings, cond_embeddings])latent_cur = self.get_noise_pred(latent_cur, t, False, context)bar.close()return uncond_embeddings_listdef invert(self, image_path: str, prompt: str, offsets=(0,0,0,0), num_inner_steps=10, early_stop_epsilon=1e-5, verbose=False):self.init_prompt(prompt)ptp_utils.register_attention_control(self.model, None)image_gt = load_512(image_path, *offsets)if verbose:print("DDIM inversion...")image_rec, ddim_latents = self.ddim_inversion(image_gt)if verbose:print("Null-text optimization...")uncond_embeddings = self.null_optimization(ddim_latents, num_inner_steps, early_stop_epsilon)return (image_gt, image_rec), ddim_latents[-1], uncond_embeddingsdef __init__(self, model):scheduler = DDIMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False,set_alpha_to_one=False)self.model = modelself.tokenizer = self.model.tokenizerself.model.scheduler.set_timesteps(NUM_DDIM_STEPS)self.prompt = Noneself.context = Nonenull_inversion = NullInversion(ldm_stable)

代码:

结果:

http://www.yayakq.cn/news/713747/

相关文章:

  • 桂阳 网站建设用ps做网站页面的大小
  • 天津网站开发建设网站认证要钱
  • 石家庄专门做网站佛山网络营销网站
  • wordpress网站好慢wordpress增加访问性能
  • 江西岳顶建设工程有限公司网站哈尔滨建站模板源码
  • 推广网站有哪些方式穆棱建设局网站
  • 软文素材重庆seo研究中心
  • 余姚 做网站建设网站公司专业
  • 黑色大气网站源码seo挖关键词
  • 淘客手机版网站怎么做怎么wordpress下载
  • 企业内部网站合肥企业网站建设工
  • 青岛网站建设机构海南app开发公司
  • 商务网站建设实训过程dw2018网页制作步骤图文
  • 网站建设公司使用图片侵权使用者有无责任小程序商城开发需要多少钱
  • 网站建设业务员招聘重庆在线教育平台
  • 网站开发用php还是.net好网站后台文本编辑器
  • 怎样看出一个网站是那个公司做的怎么做个人网站建设
  • 广州市官网网站建设怎么样吉林文明网设计专门页面
  • 品牌营销与品牌管理的区别襄樊seo
  • 网站服务流程中国建设银行官网站保本理财
  • wordpress云建站教程视频网站关键词如何选取
  • 网站域名包括哪些源码商城源码
  • 石家庄网站建设远策科技网络推广外包怎么样
  • 网站新闻后台怎么做sql网站发布流程
  • wordpress建立企业网站亚马逊网站建设特点
  • 网站建设软件 优帮云wordpress标签小工具
  • 宝塔面板怎么建设网站Wordpress4.0参考手册.CHM
  • 美食网站建设的时间进度表网站设计红色表示什么
  • 网站开发技术考试试卷wordpress数据库设计
  • 装修网站运营网站开发一般有那些语言