当前位置: 首页 > news >正文

门户网站建设工作流程广州seo关键词优化费用

门户网站建设工作流程,广州seo关键词优化费用,网站建设 400电话 广告,智通人才网招聘网东莞官网DenseNet,全称为Densely Connected Convolutional Networks,中文名为密集连接卷积网络,是由李沐等人在2017年提出的一种深度神经网络架构。 DenseNet旨在解决深度神经网络中的梯度消失问题和参数数量过多的问题,通过构建密集连接…

DenseNet,全称为Densely Connected Convolutional Networks,中文名为密集连接卷积网络,是由李沐等人在2017年提出的一种深度神经网络架构。 

DenseNet旨在解决深度神经网络中的梯度消失问题和参数数量过多的问题,通过构建密集连接的方式,使得网络能够更好地利用之前的特征,从而获得更好的性能。DenseNet的核心思想是:把网络中前面的层与后面的层进行连接,让前面的层的输出成为后面的层的输入。这样,整个卷积网络就变得非常紧凑,同时也避免了梯度消失的问题。

DenseNet的优点在于:参数少、计算速度快、准确率高。因此,DenseNet在图像识别、目标检测、图像分割等任务中都取得了很好的表现。

DenseNet是一种深度神经网络架构,它具有特殊的连接方式,可以有效地减少网络中的参数量,提高模型的准确性和稳定性。在图像分类任务中,DenseNet常常被使用。

在MATLAB中,可以使用深度学习工具箱来搭建和训练DenseNet模型。下面是一个简单的例子,展示如何使用深度学习工具箱来训练一个DenseNet模型进行CIFAR-10图像分类。

1. 准备数据

首先需要下载CIFAR-10数据集,可以使用MATLAB自带的数据集下载工具来获取数据集。

```MATLAB
cifar10Data = fullfile(tempdir, 'cifar-10-matlab');
if ~exist(cifar10Data, 'dir')
    cifar10Data = fullfile(toolboxdir('vision'), 'visiondata', 'cifar10');
    if ~exist(cifar10Data, 'dir')
        mkdir(cifar10Data);
        url = 'https://www.cs.toronto.edu/~kriz/cifar-10-matlab.tar.gz';
        helperCIFAR10Data.download(url, cifar10Data);
    end
end
```

2. 加载数据

使用 `imageDatastore` 函数将数据加载到MATLAB中。在此过程中,可以对图像进行增强处理,以提高模型的训练效果。

```MATLAB
% Load training and test data
[trainingImages, trainingLabels, testImages, testLabels] = helperCIFAR10Data.load(cifar10Data);

% Construct an imageDatastore object
trainingSet = imageDatastore(trainingImages, ...
    'labels', trainingLabels, ...
    'ReadFcn', @helperCIFAR10Data.readFunction);

testSet = imageDatastore(testImages, ...
    'labels', testLabels, ...
    'ReadFcn', @helperCIFAR10Data.readFunction);

% Prepare the data for training
inputSize = [32 32 3];
numClasses = 10;

% Apply data augmentation
augmentedTrainingSet = augmentedImageDatastore(inputSize, ...
    trainingSet, ...
    'ColorPreprocessing', 'gray2rgb', ...
    'RandCropSize', [28 28], ...
    'RandCropType', 'random', ...
    'RandRotation', [-8 8], ...
    'RandXReflection', true);
```

3. 构建DenseNet模型

使用 `densenet201` 函数从深度学习工具箱中加载DenseNet-201模型。

```MATLAB
net = densenet201;
```

可以使用 `analyzeNetwork` 函数来可视化模型架构。

```MATLAB
analyzeNetwork(net);
```

4. 训练模型

使用 `trainingOptions` 函数来配置训练选项。

```MATLAB
options = trainingOptions('sgdm', ...
    'InitialLearnRate', 0.001, ...
    'MaxEpochs', 50, ...
    'MiniBatchSize', 128, ...
    'VerboseFrequency', 50, ...
    'Plots', 'training-progress');
```

使用 `trainNetwork` 函数来训练模型。

```MATLAB
trainedNet = trainNetwork(augmentedTrainingSet, net, options);
```

5. 测试模型

使用 `classify` 函数来进行分类。

```MATLAB
predictedLabels = classify(trainedNet, testSet);
accuracy = mean(predictedLabels == testSet.Labels)
```

6. 可视化结果

使用 `montage` 函数来可视化测试集中的前20张图像及其分类结果。

```MATLAB
numImages = 20;
idx = randsample(numel(testSet.Files), numImages);
figure
montage(testSet.Files(idx), 'Size', [4 5]);
title('Test Images');

predictedLabels = classify(trainedNet, testSet);
label = cellstr(predictedLabels);
label = strcat(label, ", ", cellstr(num2str(testSet.Labels)));
groundTruth = cellstr(label);
groundTruth = strcat("Ground Truth: ", groundTruth);

predicted = cellstr(predictedLabels);
predicted = strcat("Prediction: ", predicted);

for i = 1:numImages
    text(i*32-25,32+10,groundTruth(idx(i)),'FontSize',8)
    text(i*32-25,32+20,predicted(idx(i)),'FontSize',8)
end
```

完整代码如下:

```MATLAB
cifar10Data = fullfile(tempdir, 'cifar-10-matlab');
if ~exist(cifar10Data, 'dir')
    cifar10Data = fullfile(toolboxdir('vision'), 'visiondata', 'cifar10');
    if ~exist(cifar10Data, 'dir')
        mkdir(cifar10Data);
        url = 'https://www.cs.toronto.edu/~kriz/cifar-10-matlab.tar.gz';
        helperCIFAR10Data.download(url, cifar10Data);
    end
end

[trainingImages, trainingLabels, testImages, testLabels] = helperCIFAR10Data.load(cifar10Data);

% Construct an imageDatastore object
trainingSet = imageDatastore(trainingImages, ...
    'labels', trainingLabels, ...
    'ReadFcn', @helperCIFAR10Data.readFunction);

testSet = imageDatastore(testImages, ...
    'labels', testLabels, ...
    'ReadFcn', @helperCIFAR10Data.readFunction);

% Prepare the data for training
inputSize = [32 32 3];
numClasses = 10;

% Apply data augmentation
augmentedTrainingSet = augmentedImageDatastore(inputSize, ...
    trainingSet, ...
    'ColorPreprocessing', 'gray2rgb', ...
    'RandCropSize', [28 28], ...
    'RandCropType', 'random', ...
    'RandRotation', [-8 8], ...
    'RandXReflection', true);

% Load pre-trained DenseNet-201 network
net = densenet201;

% Configure training options
options = trainingOptions('sgdm', ...
    'InitialLearnRate', 0.001, ...
    'MaxEpochs', 50, ...
    'MiniBatchSize', 128, ...
    'VerboseFrequency', 50, ...
    'Plots', 'training-progress');

% Train the network
trainedNet = trainNetwork(augmentedTrainingSet, net, options);

% Test the network
predictedLabels = classify(trainedNet, testSet);
accuracy = mean(predictedLabels == testSet.Labels)

% Visualize the results
numImages = 20;
idx = randsample(numel(testSet.Files), numImages);
figure
montage(testSet.Files(idx), 'Size', [4 5]);
title('Test Images');

predictedLabels = classify(trainedNet, testSet);
label = cellstr(predictedLabels);
label = strcat(label, ", ", cellstr(num2str(testSet.Labels)));
groundTruth = cellstr(label);
groundTruth = strcat("Ground Truth: ", groundTruth);

predicted = cellstr(predictedLabels);
predicted = strcat("Prediction: ", predicted);

for i = 1:numImages
    text(i*32-25,32+10,groundTruth(idx(i)),'FontSize',8)
    text(i*32-25,32+20,predicted(idx(i)),'FontSize',8)
end
```

http://www.yayakq.cn/news/964237/

相关文章:

  • 做购物网站建设的公司南京网站设计的公司
  • 中山公众号平台商场网站建设做内容网站赚钱吗
  • 给帅哥做奴视频网站qq群推广
  • 网站怎么验证用户是否登陆安阳县辛村镇
  • seo入门培训学校苏州seo公司排名
  • 宝塔如何搭建网站如何把网站扒下来
  • 南京专业网站设计公司网站关闭多久排名会下降
  • 嵌入字体的网站wordpress页面相册
  • 定制网站开发费用多少vs2010网站开发视频
  • wordpress无域名建站磁力库
  • 网站可以用cdr做吗中国前十名别墅装修公司
  • 模拟网站开发微信公众号登录入口在哪里
  • 扶风网站开发济南手机端建站模板
  • seo网站优化外包公司网站维护如何上图
  • 连锁销售公司网站的建设方案2024年5月新冠高峰
  • 东莞网站建设推广多少钱滨湖网站制作
  • c2c的网站有哪些图片转换链接生成器
  • 大企业网站建设代理公司和经纪公司的区别
  • 普通网站 seo 多少钱软件开发模型的种类
  • 旅游网站策划案ip安装wordpress
  • 丹东网站建设平台集宁做网站
  • 郑州外语网站建站优化泰安建网站
  • 投资公司网站建设写作网站制作
  • 网站免费永久株洲网
  • 企业网站模板下载价格多少网站源码建站视频教程
  • 社交网站用户体验网站源码大全免费的
  • 网站建设比较好的多少钱网站建设购买
  • 婚恋网站手机怎样创建网站
  • 网站建设要学哪些网站建设需要具备哪些知识
  • 广西建设厅网站培训中心手机如何强制下载网页视频