当前位置: 首页 > news >正文

金华网站建设luopan网站域名后缀区别

金华网站建设luopan,网站域名后缀区别,电影网页设计素材,小型广告公司简介范文大全文章目录 📚实验目的📚实验平台📚实验内容🐇在本地编写程序和调试🥕代码框架思路🥕代码实现 🐇在集群上提交作业并执行🥕在集群上提交作业并执行,同本地执行相比即需修改…

文章目录

  • 📚实验目的
  • 📚实验平台
  • 📚实验内容
    • 🐇在本地编写程序和调试
      • 🥕代码框架思路
      • 🥕代码实现
    • 🐇在集群上提交作业并执行
      • 🥕在集群上提交作业并执行,同本地执行相比即需修改路径。
      • 🥕修改后通过expoet,导出jar包,关注 Main-Class 的设置!
      • 🥕在终端依次输入以下指令,完成提交

📚实验目的

倒排索引(Inverted Index)被用来存储在全文搜索下某个单词在一个文档或者一组文档中的存储位置的映射,是目前几乎所有支持全文索引的搜索引擎都需要依赖的一个数据结构。通过对倒排索引的编程实现,熟练掌握 MapReduce 程序在集群上的提交与执行过程,加深对 MapReduce 编程框架的理解。

📚实验平台

  1. 操作系统:Linux
  2. Hadoop 版本:3.2.2
  3. JDK 版本:1.8
  4. Java IDE:Eclipse

📚实验内容

关于倒排索引
在这里插入图片描述

🐇在本地编写程序和调试

在本地 eclipse 上编写带词频属性的对英文文档的文档倒排索引程序,要求程序能够实现对 stop-words(如 a,an,the,in,of 等词)的去除,能够统计单词在每篇文档中出现的频率。文档数据和停词表可在此链接上下载,在伪分布式环境下完成程序的编写和调试。

在这里插入图片描述

🥕代码框架思路

  • Map():对输入的Text切分为多个word。这里的Map()包含setup()map()。每一次map都伴随着一次setup,进行停词,筛选那些不需要统计的。
  • Combine():将Map输出的中间结果相同key部分的value累加,减少向Reduce节点传输的数据量。
  • Partition():为了将同一个word的键值对发送到同一个Reduce节点,对key进行临时处理。将原key的(word, filename)临时拆开,使Partitioner只按照word值进行选择Reduce节点。基于哈希值的分片方法。
  • Reduce():利用每个Reducer接收到的键值对中,word是排好序的,来进行最后的整合。将word#filename拆分开,将filename与累加和拼到一起,存在str中。每次比较当前的word和上一次的word是否相同,若相同则将filename和累加和附加到str中,否则输出:key:word,value:str,并将新的word作为key继续。
  • 上述reduce()只会在遇到新word时,处理并输出前一个word,故对于最后一个word还需要额外的处理。重载cleanup(),处理最后一个word并输出
    在这里插入图片描述

在这里插入图片描述倒排索引的Map、Combiner、Partitioner部分就和上图一样

  • 一个Map对应一个Combiner,借助Combiner对Map输出进行一次初始整合
  • 一个Combiner又对应一个Partitioner,Partitioner将同一个word的键值对发送到同一个Reduce节点

🥕代码实现

(关注本地路径)

package index;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
import java.util.Vector;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.partition.HashPartitioner;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;public class index
{public static class Map extends Mapper<Object, Text, Text, IntWritable> {/*** setup():读取停词表到vector stop_words中*/Vector<String> stop_words;//停词表protected void setup(Context context) throws IOException {stop_words = new Vector<String>();//初始化停词表Configuration conf = context.getConfiguration();//读取停词表文件BufferedReader reader = new BufferedReader(new InputStreamReader(FileSystem.get(conf).open(new Path("hdfs://localhost:9000/user/hadoop/input/stop_words_eng.txt"))));String line;while ((line = reader.readLine()) != null) {//按行处理StringTokenizer itr=new StringTokenizer(line);while(itr.hasMoreTokens()){//遍历词,存入vectorstop_words.add(itr.nextToken());}}reader.close();}/*** map():对输入的Text切分为多个word* 输入:key:当前行偏移位置     value:当前行内容* 输出:key:word#filename    value:1*/protected void map(Object key, Text value, Context context) throws IOException, InterruptedException {FileSplit fileSplit = (FileSplit) context.getInputSplit();String fileName = fileSplit.getPath().getName();//获取文件名,转换为小写String line = value.toString().toLowerCase();//将行内容全部转为小写字母//只保留数字和字母String new_line="";for(int i = 0; i < line.length(); i ++) {if((line.charAt(i)>=48 && line.charAt(i)<=57) || (line.charAt(i)>=97 && line.charAt(i)<=122)) {//按行处理new_line += line.charAt(i);} else {//其他字符保存为空格new_line +=" ";}}line = new_line.trim();//去掉开头和结尾的空格StringTokenizer strToken=new StringTokenizer(line);//按照空格拆分while(strToken.hasMoreTokens()){String str = strToken.nextToken();if(!stop_words.contains(str)) {//不是停词则输出key-value对context.write(new Text(str+"#"+fileName), new IntWritable(1));}}}}public static class Combine extends Reducer<Text, IntWritable, Text, IntWritable> {/*** 将Map输出的中间结果相同key部分的value累加,减少向Reduce节点传输的数据量* 输入:key:word#filename    value:1* 输出:key:word#filename    value:累加和(词频)*/protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {int sum = 0;for (IntWritable val : values) {sum ++;}context.write(key, new IntWritable(sum));}}public static class Partition extends HashPartitioner<Text, IntWritable> {/*** 为了将同一个word的键值对发送到同一个Reduce节点,对key进行临时处理* 将原key的(word, filename)临时拆开,使Partitioner只按照word值进行选择Reduce节点* 基于哈希值的分片方法*/public int getPartition(Text key, IntWritable value, int numReduceTasks) {//第三个参数numPartitions表示每个Mapper的分片数,也就是Reducer的个数String term = key.toString().split("#")[0];//获取word#filename中的wordreturn super.getPartition(new Text(term), value, numReduceTasks);//按照word分配reduce节点       }}public static class Reduce extends Reducer<Text, IntWritable, Text, Text> {/*** Reduce():利用每个Reducer接收到的键值对中,word是排好序的,来进行最后的整合* 将word#filename拆分开,将filename与累加和拼到一起,存在str中* 每次比较当前的word和上一次的word是否相同,若相同则将filename和累加和附加到str中,否则输出:key:word,value:str,并将新的word作为key继续* 输入:*         key                  value*    word1#filename 1        [num1,num2,...]*    word1#filename 2        [num1,num2,...]*    word2#filename 1        [num1,num2,...]* 输出:*    key:word   value:<filename1,词频><filename2,词频>...<total,总词频>*/private String lastfile = null;//存储上一个filenameprivate String lastword = null;//存储上一个wordprivate String str = "";//存储要输出的value内容private int count = 0;private int totalcount = 0;protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {String[] tokens = key.toString().split("#");//将word和filename存在tokens数组中if(lastword == null) {lastword = tokens[0];}if(lastfile == null) {lastfile = tokens[1];}if (!tokens[0].equals(lastword)) {//此次word与上次不一样,则将上次的word进行处理并输出str += "<"+lastfile+","+count+">;<total,"+totalcount+">.";context.write(new Text(lastword), new Text(str));//value部分拼接后输出lastword = tokens[0];//更新wordlastfile = tokens[1];//更新filenamecount = 0;str="";for (IntWritable val : values) {//累加相同word和filename中出现次数count += val.get();//转为int}totalcount = count;return;}if(!tokens[1].equals(lastfile)) {//新的文档str += "<"+lastfile+","+count+">;";lastfile = tokens[1];//更新文档名count = 0;//重设count值for (IntWritable value : values){//计数count += value.get();//转为int}totalcount += count;return;}//其他情况,只计算总数即可for (IntWritable val : values) {count += val.get();totalcount += val.get();}}/*** 上述reduce()只会在遇到新word时,处理并输出前一个word,故对于最后一个word还需要额外的处理* 重载cleanup(),处理最后一个word并输出*/public void cleanup(Context context) throws IOException, InterruptedException {str += "<"+lastfile+","+count+">;<total,"+totalcount+">.";context.write(new Text(lastword), new Text(str));super.cleanup(context);}}public static void main(String args[]) throws Exception {Configuration conf = new Configuration();conf.set("fs.defaultFS", "hdfs://localhost:9000");if(args.length != 2) {System.err.println("Usage: Relation <in> <out>");System.exit(2);}Job job = Job.getInstance(conf, "InvertedIndex");//设置环境参数job.setJarByClass(index.class);//设置整个程序的类名job.setMapperClass(Map.class);//设置Mapper类job.setCombinerClass(Combine.class);//设置combiner类job.setPartitionerClass(Partition.class);//设置Partitioner类job.setReducerClass(Reduce.class);//设置reducer类job.setOutputKeyClass(Text.class);//设置Mapper输出key类型job.setOutputValueClass(IntWritable.class);//设置Mapper输出value类型FileInputFormat.addInputPath(job, new Path(args[0]));//输入文件目录FileOutputFormat.setOutputPath(job, new Path(args[1]));//输出文件目录System.exit(job.waitForCompletion(true) ? 0 : 1);//参数true表示检查并打印 Job 和 Task 的运行状况}}

补充:当我们新建一个Package和Class后运行时,可能会出现如下报错(主要是在MapReduce编程输入输出里会遇到)
在这里插入图片描述
解决办法

  • “Run As”选中“Run Configurations…”

在这里插入图片描述

  • 然后在“Arguments”里输入input output,然后再run就行了。

在这里插入图片描述


🐇在集群上提交作业并执行

集群的服务器地址为 10.102.0.198,用户主目录为/home/用户名,hdfs 目录为/user/用户名。集群上的实验文档存放目录为 hdfs://10.102.0.198:9000/input/. 英文停词表文件存放位置为hdfs://10.102.0.198:9000/stop_words/stop_words_eng.txt。

🥕在集群上提交作业并执行,同本地执行相比即需修改路径。

在这里插入图片描述

🥕修改后通过expoet,导出jar包,关注 Main-Class 的设置!

  • 选中index.java右键Export。
    在这里插入图片描述
  • 如下图选中JAR file后点Next。
    在这里插入图片描述
  • 确认选中index及其src,JAR的命名要和class名一样,比如这里是index.java,就是class index,也就是index.jar。然后点Next。
    在这里插入图片描述
  • 到如下页面,再点Next。

在这里插入图片描述

  • Main class那点Browse,选中index。

在这里插入图片描述

  • 如下图。
    在这里插入图片描述
  • 最后点finish完成导出,可在文件夹里找到index.jar。双击index.jar,在它的METS-INT里头查看Main-Class是否设置成功。
    在这里插入图片描述
    在这里插入图片描述

🥕在终端依次输入以下指令,完成提交

  • 使用 scp InvertedIndex.jar 用户名@10.102.0.198:/home/用户名 命令将本地程序提交到 Hadoop 集群
  • 通过 ssh 用户名@10.102.0.198 命令远程登录到 Hadoop 集群进行操作;
  • 使用 hadoop jar InvertedIndex.jar /input /user/用户名/output 命令在集群上运行 Hadoop 作业,指定输出目录为自己 hdfs 目录下的 output。
  • 使用 diff 命令判断自己的输出结果与标准输出的差异
scp index.jar bigdata_学号@10.102.0.198:/home/bigdata_学号
ssh bigdata_学号@10.102.0.198
hadoop jar index.jar /input /user/bigdata_学号/output
diff <(hdfs dfs -cat /output/part-r-00000) <(hdfs dfs -cat /user/bigdata_学号/output/part-r-00000)

在浏览器中打开 http://10.102.0.198:8088,可以查看集群上作业的基本执行情况。

在这里插入图片描述

http://www.yayakq.cn/news/170970/

相关文章:

  • 品牌网站怎么建设o2o商城网站建设方案
  • 源码网站怎么做网站建设pad版本是什么
  • 本地网站建设DW清丰网站建设
  • 用什么程序做视频网站曲靖高端网站制作
  • 海南网站建设制作江苏省建筑网监督信息平台
  • 网站将要准备建设的内容wordpress 社交按钮
  • 网站优化工具炫酷的网站
  • 一般网站建设中的推广费用关于做网站的英语对话
  • 怎么做用户调研网站哪里有制作网站
  • 有没有做淘宝网站的常德seo招聘
  • 南昌简单做网站scrm服务商
  • 深圳沙井公司网站建设公众号 上传 wordpress
  • 东阿网站建设价格上海都市建筑设计有限公司
  • 网站制作项目执行永川做网站
  • 织梦游戏网站模板5g边缘计算网络架构
  • 网站建设详细方案小程序商城开发北京
  • 考证培训机构报名网站c2c网站 多钱
  • 人才网站建设标题南沙区建设局网站
  • 做齐鲁油官方网站做视频网站想用家庭网络
  • 企业档案网站建设制作动漫的软件
  • 怎么免费做网站推广一个简单的登录界面网页代码
  • 自学网站建设工资wordpress标签生成页面
  • 南昌seo网站管理排版
  • 网站与网页之间的区别是什么形容网站做的好
  • 网站网站开发违法吗网站开发中间商怎么做
  • 买网站送域名论坛网站怎么做排名
  • 济南金融行业网站开发网页广告如何关闭
  • 做外围网站代理违法吗资源机
  • 湖南城市建设网站手机网站如何站点管理
  • 类似传奇的网页游戏莆田网站建设方案优化