当前位置: 首页 > news >正文

单页式网站电子商务运营平台设计

单页式网站,电子商务运营平台设计,设计一套网站多少钱,临沂网站制作价格特殊的chain langchain中的Chain有很多,能够轻松实现部分需求,极致简化代码,但是实现效果与模型智慧程度有关 会话链 效果与LLMChain大致相同 javascript 复制代码 from langchain.chains import ConversationChain from langchain_community.llms import OpenAI conversat…

特殊的chain

langchain中的Chain有很多,能够轻松实现部分需求,极致简化代码,但是实现效果与模型智慧程度有关

会话链

效果与LLMChain大致相同

javascript
复制代码
from langchain.chains import ConversationChain
from langchain_community.llms import OpenAI
conversation = ConversationChain(llm=OpenAI())

SQL链

顾名思义,跟数据库有关,可以使用自然语言进行数据库操作,他自动生成sql语句操作,并且进行归纳回答,速度比直接使用数据库链接工具更慢,智慧程度低对的模型进行理解自然语言时出现偏差可能会把数据库秒了.属于待开发功能

ini
复制代码# pip install -U langchain langchain-community langchain-openai
from langchain_openai import ChatOpenAI
from langchain.chains import create_sql_query_chain#查询链
from langchain_community.utilities import SQLDatabase
db = SQLDatabase.from_uri("mysql+pymysql://{数据库用户名}:{密码}@localhost/{数据库名}")
llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0)
chain = create_sql_query_chain(llm, db)
response = chain.invoke({"question": "这个数据库中有多少数据"})
ini
复制代码
#数据库crud都能操作,但是可能会秒数据库,在以后的版本可能会被移除
import os
from dotenv import find_dotenv, load_dotenv
load_dotenv(find_dotenv())
OPENAI_API_BASE=os.environ["OPENAI_API_BASE"] 
OPENAI_API_KEY=os.environ["OPENAI_API_KEY"]
os.environ["SERPAPI_API_KEY"]
from langchain_openai import ChatOpenAI
from langchain.utilities import SQLDatabase
from langchain_experimental.sql import SQLDatabaseChain
from langchain.memory import ConversationBufferMemory
db = SQLDatabase.from_uri("mysql+pymysql://{数据库用户名}:{密码}@localhost/{数据库名}")
llm=ChatOpenAI(api_key=OPENAI_API_KEY,base_url=OPENAI_API_BASE,temperature=0)#扩散度置为0,回答更准确
memory = ConversationBufferMemory(memory_key="chat_history")
db_chain = SQLDatabaseChain(llm=llm,database=db, verbose=False,use_query_checker=True, memory=memory)
text="表中有那些字段"
res=db_chain.run(text)
print(res)

抽取链

将人的自然语言转换成结构化语句,除了使用人力或者专门训练的模型似乎没有好的解决办法langchain中有个内置的抽取链,能够做到这件难事儿,实现抽取链有两种方式

  1. 使用langchain的create_extraction_chain

使用langchain稳定版本中的抽取链

ini
复制代码
import os
from dotenv import find_dotenv, load_dotenv
load_dotenv(find_dotenv())
OPENAI_API_BASE=os.environ["OPENAI_API_BASE"] 
OPENAI_API_KEY=os.environ["OPENAI_API_KEY"]
from langchain.chains import create_extraction_chain
from langchain_openai import ChatOpenAI
from langchain.prompts import (PromptTemplate,
)llm=ChatOpenAI(api_key=OPENAI_API_KEY,base_url=OPENAI_API_BASE,temperature=0)def extract(res:str):prompt = PromptTemplate(template="分析出\n{res}\n中的水果\n",#进行提示告诉它该怎么做input_variables=["res"],)# Schema定义结构化的数据模型schema = {"properties": {"reason": {"fruit": "string"},},"required": ["fruit"],}chain = create_extraction_chain(schema, llm, prompt,verbose=True)return chain.run(res)if __name__ == "__main__":res = "我喜欢吃苹果,它让我感到幸福"print(extract(res))
  1. 使用kor.extraction的create_extraction_chain

ini
复制代码
#pip install kor
import os
from dotenv import find_dotenv, load_dotenv
load_dotenv(find_dotenv())
OPENAI_API_BASE=os.environ["OPENAI_API_BASE"] 
OPENAI_API_KEY=os.environ["OPENAI_API_KEY"] 
from langchain_openai import ChatOpenAI
from langchain.prompts import PromptTemplate
from langchain.schema.prompt_template import BasePromptTemplate
from kor.extraction import create_extraction_chain# %% 信息抽取链 %%
from kor.nodes import Object, Text, Number #%% 节点类型 %%
import jsondef json_dump(json_object): json_formatted_str = json.dumps(json_object, indent=2, ensure_ascii=False) print(json_formatted_str)llm=ChatOpenAI(api_key=OPENAI_API_KEY,base_url=OPENAI_API_BASE,temperature=0)res_schema = Object(id="成绩",description="关于成绩的信息",# %%描述信息 %%attributes=[#%% 属性text表示字符串字段,number表示数字字段 %%Text(id="name",description="这个人的名字."),Text(id="Results",description="关于这个人的成绩."),Number(id="ranking",description="关于这个人的排名.")],examples=[# 给模型的样本例子,将数据输出成例子一样的格式 ('''张山这次获得第一名,他考了100分, 而李四获得第五名,他考了80.''',[{"name": "张三", "Results": "100", "ranking": 1},{"name": "李四", "Results": "80", "ranking": 5},],)]
)
extraction_chain = create_extraction_chain(llm, res_schema)
text="王五比赵六多10分,赵六只考了60分排十名,赵六比他多三名"
output=extraction_chain.run(text)
json_dump(output)

根据使用,第三方的kor抽取效果要更好,但是会有警告,而且需要自己转换数据类型,官方也没有给出后续是否会移除这个kor

QA链

众所周知,大语言模型知道很多东西,知识很有广度,但我问他xx大学有什么选修课的时候,他可能就无法回答,如果他有这个大学的选修课知识库,就能回答了,所以QA链就是基于某个知识库进行问答的,这个知识库可以是txt,pdf,或者mongoDB,但必须是一个文档.

需要将文档进行加载,使用text_splitter进行向量存储,这里有一个向量数据库的概念就不过多描述了,有兴趣可以自行了解.

ini
复制代码
import os
from dotenv import find_dotenv, load_dotenv
load_dotenv(find_dotenv())
OPENAI_API_BASE=os.environ["OPENAI_API_BASE"] 
OPENAI_API_KEY=os.environ["OPENAI_API_KEY"] from langchain_openai import ChatOpenAI,OpenAIEmbeddingsfrom langchain_community.document_loaders import PyMuPDFLoaderfrom langchain.chains.question_answering import load_qa_chain
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import ChromaPDF_NAME = 'xxx.pdf'##pdf的地址
docs = PyMuPDFLoader(PDF_NAME).load()##加载到docs中
#进行向量存储
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
split_docs = text_splitter.split_documents(docs)embeddings = OpenAIEmbeddings()
vectorstore = Chroma.from_documents(split_docs, embeddings, collection_name="serverless_guide")llm=ChatOpenAI(api_key=OPENAI_API_KEY,base_url=OPENAI_API_BASE,temperature=0)
chain = load_qa_chain(llm, chain_type="stuff",verbose=True)def search_recommend(human_input):query = human_inputsimilar_docs = vectorstore.similarity_search(query, 3)res=chain.run(input_documents=similar_docs, question=query)#run方法后续将换成invokereturn restext="简单介绍一下主要内容"
res=search_recommend(text)
print(res)

langchain中还有更多其他的链,可在官方文档中查看,最好是英文文档,中文文档更新速度很慢

如何系统的去学习大模型LLM ?

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料 包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来

😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓

在这里插入图片描述

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

在这里插入图片描述

四、AI大模型商业化落地方案

img

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。
  • 内容
    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
      - L1.4.1 知识大模型
      - L1.4.2 生产大模型
      - L1.4.3 模型工程方法论
      - L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
  • 内容
    • L2.1 API接口
      - L2.1.1 OpenAI API接口
      - L2.1.2 Python接口接入
      - L2.1.3 BOT工具类框架
      - L2.1.4 代码示例
    • L2.2 Prompt框架
      - L2.2.1 什么是Prompt
      - L2.2.2 Prompt框架应用现状
      - L2.2.3 基于GPTAS的Prompt框架
      - L2.2.4 Prompt框架与Thought
      - L2.2.5 Prompt框架与提示词
    • L2.3 流水线工程
      - L2.3.1 流水线工程的概念
      - L2.3.2 流水线工程的优点
      - L2.3.3 流水线工程的应用
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
  • 内容
    • L3.1 Agent模型框架
      - L3.1.1 Agent模型框架的设计理念
      - L3.1.2 Agent模型框架的核心组件
      - L3.1.3 Agent模型框架的实现细节
    • L3.2 MetaGPT
      - L3.2.1 MetaGPT的基本概念
      - L3.2.2 MetaGPT的工作原理
      - L3.2.3 MetaGPT的应用场景
    • L3.3 ChatGLM
      - L3.3.1 ChatGLM的特点
      - L3.3.2 ChatGLM的开发环境
      - L3.3.3 ChatGLM的使用示例
    • L3.4 LLAMA
      - L3.4.1 LLAMA的特点
      - L3.4.2 LLAMA的开发环境
      - L3.4.3 LLAMA的使用示例
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
  • 内容
    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

学习计划:

  • 阶段1:1-2个月,建立AI大模型的基础知识体系。
  • 阶段2:2-3个月,专注于API应用开发能力的提升。
  • 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
  • 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓

在这里插入图片描述

http://www.yayakq.cn/news/638307/

相关文章:

  • 商城网站大全开网店卖什么好
  • 苏州网络公司建网站网站组成部分
  • 哪个网站可以建设网站注册网站应注意事项
  • 医院网站建设的目标淘宝运营培训内容
  • wordpress添加路由网络seo
  • 廊坊网站建设外包wordpress huifu
  • 信息发布网站开发模板华为网络服务商
  • 顺的品牌网站建设网站建设公司推广网站品牌运营
  • 阿里云个人怎么免费做网站ppt做视频的模板下载网站
  • 成都制作网站的公司简介怎么做虚拟的网站
  • 如何自己做门户网站广州注册监理公司
  • 开一家做网站的公司淘宝客wordpress
  • 网站免费正能量软件下载wordpress生成分类目录
  • 网络营销能做什么wordpress博客优化插件
  • 企业品牌网站建设我们的优势给wordpress插件添加po文件
  • vs能建设网站吗怎样建免费个人网站
  • wordpress扒站工具网站做优化公司
  • 六盘水住房和城乡建设部网站用ps做简单的网页设计
  • 深圳专业网站制作多少钱建一个图片类网站需要多少钱
  • 湛江网站建设方案报价中铁建设投资集团有限公司招聘网站
  • 网站 的特效做英文网站需要多少
  • 南山网站建设-信科网络找衣服款式的网站
  • 空间站 参考消息做框架表格网站
  • 建设工程查询市场价网站wordpress文章没办法显示略缩图
  • 重庆网站建设制作设计公司个人网站包含哪些内容
  • 旅游景区门户网站建设规划方案单位内网网站建设 开设栏目
  • 余姚企业网站建设公司昆明网页设计
  • 郑州网站设计网站网站维护和更新
  • 奥地利网站后缀dw制作网页用的模板
  • 聊城手机网站建设服务广州网络营销推广公司