当前位置: 首页 > news >正文

专门做娱乐场所的设计网站专业网页设计师

专门做娱乐场所的设计网站,专业网页设计师,泰州网站制作专业,网站风格变化LRU缓存 LRU缓存的实现思路LRU缓存的操作C11 STL实现LRU缓存自行设计双向链表 哈希表 LRU(Least Recently Used,最近最少使用)缓存是一种常见的缓存淘汰算法,其基本思想是:当缓存空间已满时,移除最近最少使…

LRU缓存

  • LRU缓存的实现思路
  • LRU缓存的操作
  • C++11 STL实现LRU缓存
  • 自行设计双向链表 + 哈希表

LRU(Least Recently Used,最近最少使用)缓存是一种常见的缓存淘汰算法,其基本思想是:当缓存空间已满时,移除最近最少使用的数据。LRU缓存通常通过链表(双向链表)和哈希表相结合来实现,利用哈希表快速查找,链表保持数据的使用顺序。

链接:leetcode 设计LRU缓存

LRU缓存的实现思路

实现思路:哈希表 + 双向链表

  • 为什么使用哈希表?
    哈希表:用来存储键值对,可以在常数时间内(O(1))进行查找、插入和删除操作。

  • 为什么使用双向带头尾链表?
    双向链表:用来维护数据的使用顺序。最近使用的元素放在链表的头部,最久未使用的元素放在链表的尾部。通过这种方式可以在O(1)的时间复杂度下实现删除最久未使用的元素。

LRU缓存的操作

  • Get(key): 如果键存在于缓存中,返回对应的值并将该键值对移到链表头部,表示最近被访问过。如果不存在,返回-1。
  • Put(key, value): 插入键值对。如果缓存已满,则删除最久未使用的元素,之后插入新的键值对,并将其移到链表头部。

C++11 STL实现LRU缓存

时间复杂度分析:
get(key):查找操作是O(1),然后通过 touch 函数将键移到链表头部,也是在O(1)时间内完成的。
put(key, value):插入或更新键值对的操作是O(1),如果缓存满了需要删除最久未使用的元素(evict),删除操作也是O(1)。因此,get 和 put 操作的时间复杂度都是 O(1)。

#include <iostream>
#include <unordered_map>
#include <list>class LRUCache {
public:LRUCache(int capacity) : capacity(capacity) {}// 获取缓存中的值int get(int key) {auto it = cache.find(key);if (it == cache.end()) {return -1;  // 未找到键,返回 -1}touch(it);  // 标记为最近使用return it->second.first;  // 返回对应的值}// 插入新的键值对void put(int key, int value) {auto it = cache.find(key);if (it != cache.end()) {touch(it);  // 标记为最近使用it->second.first = value;  // 更新值} else {if (cache.size() == capacity) {evict();  // 删除最久未使用的元素}// 插入新的键值对到链表头部order.push_front(key);cache[key] = {value, order.begin()};  // 存入哈希表,值和链表位置}}private:// 更新元素为最近使用void touch(std::unordered_map<int, std::pair<int, std::list<int>::iterator>>::iterator it) {int key = it->first;order.erase(it->second.second);  // 删除当前元素order.push_front(key);  // 将元素插入链表头部it->second.second = order.begin();  // 更新迭代器位置}// 淘汰最久未使用的元素void evict() {int key_to_evict = order.back();  // 获取尾部元素(最久未使用)order.pop_back();  // 从链表中移除cache.erase(key_to_evict);  // 从哈希表中删除}int capacity;  // 缓存容量std::list<int> order;  // 双向链表,维护键的访问顺序std::unordered_map<int, std::pair<int, std::list<int>::iterator>> cache;  // 哈希表,存储键值对和链表位置
};int main() {LRUCache cache(2);  // 设置缓存容量为2cache.put(1, 1);    // 缓存: {1=1}cache.put(2, 2);    // 缓存: {1=1, 2=2}std::cout << cache.get(1) << std::endl;  // 返回 1,缓存: {2=2, 1=1}cache.put(3, 3);    // 淘汰键 2,缓存: {1=1, 3=3}std::cout << cache.get(2) << std::endl;  // 返回 -1 (未找到)cache.put(4, 4);    // 淘汰键 1,缓存: {3=3, 4=4}std::cout << cache.get(1) << std::endl;  // 返回 -1 (未找到)std::cout << cache.get(3) << std::endl;  // 返回 3std::cout << cache.get(4) << std::endl;  // 返回 4return 0;
}

效果:代码简洁,但效率不高。
在这里插入图片描述

自行设计双向链表 + 哈希表

#include <iostream>
#include <unordered_map>using namespace std;struct DLinkedNode {int key, value;DLinkedNode* prev;DLinkedNode* next;DLinkedNode() : key(0), value(0), prev(nullptr), next(nullptr) {}DLinkedNode(int _key, int _value) : key(_key), value(_value), prev(nullptr), next(nullptr) {}
};class LRUCache {
private:unordered_map<int, DLinkedNode*> cache;DLinkedNode* head;DLinkedNode* tail;int size;int capacity;public:LRUCache(int _capacity) : capacity(_capacity), size(0) {// 使用伪头部和伪尾部节点head = new DLinkedNode();tail = new DLinkedNode();head->next = tail;tail->prev = head;}int get(int key) {if (!cache.count(key)) {return -1;  // 如果找不到该键,返回 -1}DLinkedNode* node = cache[key];moveToHead(node);  // 移动到链表头部return node->value;  // 返回值}void put(int key, int value) {if (!cache.count(key)) {// 如果 key 不存在,创建新节点DLinkedNode* node = new DLinkedNode(key, value);cache[key] = node;addToHead(node);  // 添加到链表头部++size;if (size > capacity) {// 超过容量,删除尾部节点DLinkedNode* removed = removeTail();cache.erase(removed->key);  // 从哈希表中删除该键delete removed;  // 防止内存泄漏--size;}}else {// 如果 key 存在,更新值,并移到头部DLinkedNode* node = cache[key];node->value = value;moveToHead(node);}}void addToHead(DLinkedNode* node) {node->prev = head;node->next = head->next;head->next->prev = node;head->next = node;}void removeNode(DLinkedNode* node) {node->prev->next = node->next;node->next->prev = node->prev;}void moveToHead(DLinkedNode* node) {removeNode(node);  // 移除节点addToHead(node);   // 重新添加到头部}DLinkedNode* removeTail() {DLinkedNode* node = tail->prev;removeNode(node);return node;}
};int main() {LRUCache cache(2);  // 缓存容量为2cache.put(1, 1);    // 缓存: {1=1}cache.put(2, 2);    // 缓存: {1=1, 2=2}cout << cache.get(1) << endl;  // 返回 1,缓存: {2=2, 1=1}cache.put(3, 3);    // 淘汰键 2,缓存: {1=1, 3=3}cout << cache.get(2) << endl;  // 返回 -1,键 2 不存在cache.put(4, 4);    // 淘汰键 1,缓存: {3=3, 4=4}cout << cache.get(1) << endl;  // 返回 -1,键 1 不存在cout << cache.get(3) << endl;  // 返回 3cout << cache.get(4) << endl;  // 返回 4return 0;
}

代码转自力扣官方题解。
效果:时间复杂度明显降低, 效率提高。在这里插入图片描述

总结

上述实现利用了哈希表和双向链表的组合,保证了LRU缓存操作的高效性。哈希表提供了O(1)的查找和更新时间,而双向链表提供了O(1)的插入和删除操作,确保了缓存的高效管理。这个实现适用于高性能缓存系统,如数据库缓存、Web缓存等。

http://www.yayakq.cn/news/99945/

相关文章:

  • 如何做推广自己网站江西鄱阳专业做网站
  • 龙岗区网站建设哪个公司好免费的招标网站有哪些
  • 北京网站平台开发网站建设 不需要见面
  • 网站维护费计入什么科目wordpress有赞支付宝
  • 网站增加新闻功能上海到北京飞机航班查询
  • 哈工大 网站开发建筑方面的网站
  • 广州天河区网站设计公司上海做网站哪家公司好
  • 模板网站配置文件高校网站建设滞后
  • 沈阳专业做网站方案商业图片素材网站
  • 如何宣传自己的网站沈阳建网站的公司
  • 浏览网站内下载文件新浪博客怎样上传wordpress
  • 广州天河区建设网站设计网站大全下载
  • 网站打开wordpresswordpress 列表样式
  • 建站工具 风铃成都百度网站排名优化
  • 微网站模板代码如何做好营销
  • 做网站设计师工资多少网站横幅图片
  • 做企业网站市场分析text-indent:2em wordpress
  • 建设直播网站需要多少钱牛商网专注营销型网站建设
  • 有关网站开发的文献南京网络推广
  • 网站建设新闻稿新西兰网站后缀
  • 网站建设周志200字注册公司上什么网站
  • 灵犀 科技高端网站建设wordpress实现文件上传
  • 公司网站流量大 怎么办四川城市建设住建厅网站
  • 网站开发规格一级域名如何分发二级域名
  • 个人可以建网站卖东西吗可信的专业网站建设
  • 网站目录做301怎么优化标题和关键词排名
  • 网站备案需要哪些东西临淄辛店今天招聘信息
  • 海南省建设厅网站首页如何做网站营销
  • 泉州网站制作多少钱域名注册人信息
  • 贵阳seo网站推广网站策划书的主题有哪些