当前位置: 首页 > news >正文

东莞专业网站制作设计网络培训学习心得

东莞专业网站制作设计,网络培训学习心得,wordpress网站部署,济南建站优化由NearestNeighbors类包装 1 主要使用方法 sklearn.neighbors.BallTree(X, leaf_size40, metricminkowski, **kwargs) X数据集中的点数leaf_size改变 leaf_size 不会影响查询的结果,但可以显著影响查询的速度和构建树所需的内存metric用于距离计算的度量。默认为…

由NearestNeighbors类包装

1 主要使用方法

sklearn.neighbors.BallTree(X, leaf_size=40, metric='minkowski', **kwargs)
X数据集中的点数
leaf_size改变 leaf_size 不会影响查询的结果,但可以显著影响查询的速度和构建树所需的内存
metric用于距离计算的度量。默认为 "minkowski"

2 主要方法

2.1 get_arrays

import numpy as np
from sklearn.neighbors import BallTree
X = np.random.random((10, 3))
tree = BallTree(X)                
tree.get_arrays()'''
(array([[0.90651098, 0.68471698, 0.6299996 ],[0.82751465, 0.31739009, 0.61572299],[0.22778906, 0.63614041, 0.73672184],[0.64655758, 0.9729849 , 0.68232389],[0.94992886, 0.72604933, 0.45649069],[0.34932115, 0.95985124, 0.41451989],[0.45131894, 0.21650206, 0.82466273],[0.87047096, 0.48403116, 0.58119046],[0.94468825, 0.14985636, 0.12132986],[0.62717326, 0.12924198, 0.23928098]]),array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], dtype=int64),array([(0, 10, 1, 0.61638879)],dtype=[('idx_start', '<i8'), ('idx_end', '<i8'), ('is_leaf', '<i8'), ('radius', '<f8')]),array([[[0.68012737, 0.52767645, 0.53022429]]]))
'''
  • 返回了4个数组
    • 第一个数组:原始数据点数组

    • 第二个数组:整数数组,代表每个点的索引

    • 第三个数组:结构化数组,包含了 BallTree 的内部树结构的信息

      • idx_startidx_end:定义了存储在当前节点的点的索引范围。
      • is_leaf:表明当前节点是否是叶节点。
      • radius:当前节点中所有点到节点中心点的最大距离
    • 第四个数组:树的每个节点的中心点

2.2 get_tree_stats

获取 BallTree 的状态信息:树的剪枝次数、叶节点的数量、分裂次数

2.3 query

查询树以找到 k 个最近邻居

query(X, k=1, return_distance=True, dualtree=False, breadth_first=False)
X要查询的点的数组
k

(int,默认为1)

要返回的最近邻居的数量

return_distance

(bool,默认为True)

如果为 True,返回一个包含距离和索引的元组 (d, i);

如果为 False,只返回数组 i

dualtree

(bool,默认为False):

如果为 True,使用双树形式进行查询:为查询点构建一个树,并使用这对树来高效地搜索这个空间当点的数量变得很大时,这可以带来更好的性能

breadth_first

(bool,默认为False)

如果为 True,则以广度优先的方式查询节点。否则,以深度优先的方式查询

sort_results

(bool,默认为True)

如果为 True,则在返回时对每个点的距离和索引进行排序,使得第一列包含最近的点

import numpy as np
from sklearn.neighbors import BallTree
X = np.random.random((100, 3))
tree = BallTree(X)                
tree.query(X[:3],k=3)
'''
(array([[0.        , 0.08335798, 0.15625817],[0.        , 0.06843236, 0.10825558],[0.        , 0.0968137 , 0.10245125]]),array([[ 0, 59, 88],[ 1, 70,  5],[ 2, 43, 20]], dtype=int64))
'''

2.4 query_radius

  • 进行半径查询的功能
  • 查询树,以找出在指定半径 r 内的邻居点
query_radius(X, r, return_distance=False, count_only=False, sort_results=False)
X要查询的点的数组
r

返回邻居的距离范围

r 可以是单个值,也可以是一个数组,形状为 x.shape[:-1],如果每个点需要不同的半径

return_distance

(bool,默认为False)

如果为 True,则返回每个点的邻居距离;如果为 False,则只返回邻居

query() 方法不同,这里设置 return_distance=True 会增加计算时间。如果 return_distance=False,并不需要显式计算所有距离

count_only

(bool,默认为False)

如果为 True,则只返回距离 r 内的点的数量;

如果为 False,则返回距离 r 内所有点的索引

sort_results

(bool,默认为False)

如果为 True,则在返回之前对距离和索引进行排序。如果为 False,则结果不排序

import numpy as np
from sklearn.neighbors import BallTree
X = np.random.random((100, 3))
tree = BallTree(X)                
tree.query_radius(X[:3],r=0.3)
'''
array([array([ 0, 68, 11, 31, 46, 19, 36, 63, 16, 86, 79], dtype=int64),array([26, 64, 20, 94,  1,  4, 13,  3], dtype=int64),array([35, 50, 30, 83, 85, 18, 15, 53,  2, 96, 81], dtype=int64)],dtype=object)
'''

2.5 two_point_correlation

计算距离小于等于r[i]的点的数量

two_point_correlation(X, r, dualtree=False)
X要查询的点集
r一维数组,包含距离值
dualtree

如果为 True,则使用双树算法;否则,使用单树算法。

对于大量数据点(N),双树算法可能有更好的扩展性

返回值

counts (ndarray): counts[i] 包含距离小于或等于 r[i] 的点对数

import numpy as np
from sklearn.neighbors import BallTree
X = np.random.random((100, 3))
r=np.linspace(0.1,1,5)
tree = BallTree(X)                
tree.two_point_correlation(X[:3],r=r)
#array([  4,  34,  99, 196, 263], dtype=int64)
'''
返回的第一个值:和X[0]的距离小于r[0]的数量+和X[1]的距离小于r[0]的数量+和X[2]的距离小于r[0]的数量
'''

3 KD-Tree

和Ball-Tree 一模一样

http://www.yayakq.cn/news/64048/

相关文章:

  • 长春微网站网页设计代码模板素材
  • 给期货交易类做网站违法吗服装网站怎么做
  • 网站建设心得.doc团购产品 网站建设
  • 同安建设局网站做贺卡网站
  • 湖州站内优化seo公司网站排名的重要性
  • 注册公司哪个网站17一起做网站包包
  • 咨询网站设计跨专业的简历怎么制作
  • 衡水城乡建设局网站wordpress动漫网站模板
  • 怎样申请网站郑州全员核酸
  • 建设部监理工程师报考网站佛山网站优化什么价格
  • 合肥高新区建设发展局网站制作灯笼的材料
  • 怎么建设网站视频教程网站做细分领域
  • 南阳卧龙区2015网站建设价格linux网页制作软件
  • 做房地产一级市场的看什么网站爱论网
  • 新万网站建设wordpress创建目录
  • 官方网站建设成果网页设计相关的网站
  • 网站做百度推广怎么推广网站小学生做网站软件
  • 摄影网站首页设计天津做网站
  • 网站视频打不开什么原因网站建设 营销
  • 合肥网站开发公司电话装修网站排名前十
  • 社团网站开发模板app源码交易平台
  • 六枝做网站德阳市建设管理一体化平台网站
  • 铁岭网站开发免费空间和域名
  • 免费网站知乎有了网站源码如何做网页
  • 公司网站开发需要多少钱成都搭建公司
  • 中山做网站公司wordpress主题设置导出
  • 怎么免费搭建自己的网站网络服务器租用
  • 教学互动网站的设计阿里云 wordpress 响应时间
  • 公众号兼职网站开发wordpress 还有什么
  • 网上做网站钱被骗了报案有用吗海洋网站建设网络公司