当前位置: 首页 > news >正文

网站的组成临沂做网站首选

网站的组成,临沂做网站首选,南宁网站推广哪家好,wordpress熊掌号自动提交目录一、环境准备1.进入ModelArts官网2.使用CodeLab体验Notebook实例二、数据变换 TransformsCommon TransformsComposeVision TransformsRescaleNormalizeHWC2CWHText TransformsBasicTokenizerLookupLambda Transforms通常情况下,直接加载的原始数据并不能直接送入…

目录

  • 一、环境准备
    • 1.进入ModelArts官网
    • 2.使用CodeLab体验Notebook实例
  • 二、数据变换 Transforms
    • Common Transforms
      • Compose
    • Vision Transforms
      • Rescale
      • Normalize
      • HWC2CWH
    • Text Transforms
      • BasicTokenizer
      • Lookup
    • Lambda Transforms

通常情况下,直接加载的原始数据并不能直接送入神经网络进行训练,此时我们需要对其进行数据预处理。MindSpore提供不同种类的数据变换(Transforms),配合数据处理Pipeline来实现数据预处理。所有的Transforms均可通过map方法传入,实现对指定数据列的处理。

如果你对MindSpore感兴趣,可以关注昇思MindSpore社区

在这里插入图片描述

在这里插入图片描述

一、环境准备

1.进入ModelArts官网

云平台帮助用户快速创建和部署模型,管理全周期AI工作流,选择下面的云平台以开始使用昇思MindSpore,获取安装命令,安装MindSpore2.0.0-alpha版本,可以在昇思教程中进入ModelArts官网

在这里插入图片描述

选择下方CodeLab立即体验

在这里插入图片描述

等待环境搭建完成

在这里插入图片描述

2.使用CodeLab体验Notebook实例

下载NoteBook样例代码.ipynb为样例代码

在这里插入图片描述

选择ModelArts Upload Files上传.ipynb文件

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

选择Kernel环境

在这里插入图片描述

切换至GPU环境

在这里插入图片描述

进入昇思MindSpore官网,点击上方的安装

在这里插入图片描述

获取安装命令

在这里插入图片描述

回到Notebook中,在第一块代码前加入命令
在这里插入图片描述

pip install --upgrade pip

在这里插入图片描述

本章节中的示例代码依赖download,可使用命令pip install download安装

pip install download

在这里插入图片描述

安装MindSpore2.0.0-alpha版本

conda install mindspore=2.0.0a0 -c mindspore -c conda-forge

在这里插入图片描述
安装mindvision

pip install mindvision

在这里插入图片描述

导入mindspore

import mindspore
from mindspore import nn
from mindspore.dataset import vision, transforms
from mindspore.dataset import MnistDataset

在这里插入图片描述

二、数据变换 Transforms

mindspore.dataset提供了面向图像、文本、音频等不同数据类型的Transforms,同时也支持使用Lambda函数。下面分别对其进行介绍。

import numpy as np
from PIL import Image
from download import download
from mindspore.dataset import transforms, vision, text
from mindspore.dataset import GeneratorDataset, MnistDataset

在这里插入图片描述

Common Transforms

mindspore.dataset.transforms模块支持一系列通用Transforms。这里我们以Compose为例,介绍其使用方式。

Compose

Compose接收一个数据增强操作序列,然后将其组合成单个数据增强操作。我们仍基于Mnist数据集呈现Transforms的应用效果。

# Download data from open datasetsurl = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/" \"notebook/datasets/MNIST_Data.zip"
path = download(url, "./", kind="zip", replace=True)train_dataset = MnistDataset('MNIST_Data/train')

在这里插入图片描述

image, label = next(train_dataset.create_tuple_iterator())
print(image.shape)

在这里插入图片描述

composed = transforms.Compose([vision.Rescale(1.0 / 255.0, 0),vision.Normalize(mean=(0.1307,), std=(0.3081,)),vision.HWC2CHW()]
)
train_dataset = train_dataset.map(composed, 'image')
image, label = next(train_dataset.create_tuple_iterator())
print(image.shape)

在这里插入图片描述

Vision Transforms

mindspore.dataset.vision模块提供一系列针对图像数据的Transforms。在Mnist数据处理过程中,使用了Rescale、Normalize和HWC2CHW变换。下面对其进行详述。

Rescale

Rescale变换用于调整图像像素值的大小,包括两个参数:

  • rescale:缩放因子。
  • shift:平移因子。

图像的每个像素将根据这两个参数进行调整,输出的像素值为 𝑜𝑢𝑡𝑝𝑢𝑡𝑖=𝑖𝑛𝑝𝑢𝑡𝑖∗𝑟𝑒𝑠𝑐𝑎𝑙𝑒+𝑠ℎ𝑖𝑓𝑡

这里我们先使用numpy随机生成一个像素值在[0, 255]的图像,将其像素值进行缩放。

random_np = np.random.randint(0, 255, (48, 48), np.uint8)
random_image = Image.fromarray(random_np)
print(random_np)

在这里插入图片描述

为了更直观地呈现Transform前后的数据对比,我们使用Transforms的Eager模式进行演示。首先实例化Transform对象,然后调用对象进行数据处理。

rescale = vision.Rescale(1.0 / 255.0, 0)
rescaled_image = rescale(random_image)
print(rescaled_image)

在这里插入图片描述

可以看到,使用Rescale后的每个像素值都进行了缩放。

Normalize

Normalize变换用于对输入图像的归一化,包括三个参数:

  • mean:图像每个通道的均值。
  • std:图像每个通道的标准差。
  • is_hwc:输入图像格式为(height, width, channel)还是(channel, height, width)。
    在这里插入图片描述
normalize = vision.Normalize(mean=(0.1307,), std=(0.3081,))
normalized_image = normalize(rescaled_image)
print(normalized_image)

在这里插入图片描述

HWC2CWH

HWC2CWH变换用于转换图像格式。在不同的硬件设备中可能会对(height, width, channel)或(channel, height, width)两种不同格式有针对性优化。MindSpore设置HWC为默认图像格式,在有CWH格式需求时,可使用该变换进行处理。

这里我们先将前文中normalized_image处理为HWC格式,然后进行转换。可以看到转换前后的shape发生了变化。

hwc_image = np.expand_dims(normalized_image, -1)
hwc2cwh = vision.HWC2CHW()
chw_image = hwc2cwh(hwc_image)
print(hwc_image.shape, chw_image.shape)

在这里插入图片描述

Text Transforms

mindspore.dataset.text模块提供一系列针对文本数据的Transforms。与图像数据不同,文本数据需要有分词(Tokenize)、构建词表、Token转Index等操作。这里简单介绍其使用方法。

首先我们定义三段文本,作为待处理的数据,并使用GeneratorDataset进行加载。

texts = ['Welcome to Beijing','北京欢迎您!','我喜欢China!',
]
test_dataset = GeneratorDataset(texts, 'text')

在这里插入图片描述

BasicTokenizer

分词(Tokenize)操作是文本数据的基础处理方法,MindSpore提供多种不同的Tokenizer。这里我们选择基础的BasicTokenizer举例。配合map,将三段文本进行分词,可以看到处理后的数据成功分词。

test_dataset = test_dataset.map(text.BasicTokenizer())
print(next(test_dataset.create_tuple_iterator()))

在这里插入图片描述

Lookup

Lookup为词表映射变换,用来将Token转换为Index。在使用Lookup前,需要构造词表,一般可以加载已有的词表,或使用Vocab生成词表。这里我们选择使用Vocab.from_dataset方法从数据集中生成词表。

vocab = text.Vocab.from_dataset(test_dataset)

在这里插入图片描述

获得词表后我们可以使用vocab方法查看词表。

print(vocab.vocab())

在这里插入图片描述

生成词表后,可以配合map方法进行词表映射变换,将Token转为Index。

test_dataset = test_dataset.map(text.Lookup(vocab))
print(next(test_dataset.create_tuple_iterator()))

在这里插入图片描述

Lambda Transforms

Lambda函数是一种不需要名字、由一个单独表达式组成的匿名函数,表达式会在调用时被求值。Lambda Transforms可以加载任意定义的Lambda函数,提供足够的灵活度。在这里,我们首先使用一个简单的Lambda函数,对输入数据乘2:

test_dataset = GeneratorDataset([1, 2, 3], 'data', shuffle=False)
test_dataset = test_dataset.map(lambda x: x * 2)
print(list(test_dataset.create_tuple_iterator()))

在这里插入图片描述

[[Tensor(shape=[], dtype=Int64, value= 2)], [Tensor(shape=[], dtype=Int64, value= 4)], [Tensor(shape=[], dtype=Int64, value= 6)]]
可以看到map传入Lambda函数后,迭代获得数据进行了乘2操作。

我们也可以定义较复杂的函数,配合Lambda函数实现复杂数据处理:

def func(x):return x * x + 2test_dataset = test_dataset.map(lambda x: func(x))
print(list(test_dataset.create_tuple_iterator()))

在这里插入图片描述

http://www.yayakq.cn/news/113786/

相关文章:

  • 网站空间付款方式网站清除数据库
  • iis应用程序池与网站厦门建设局电话多少
  • 泉州网站建设科技公司wordpress纯净版下载
  • 宿迁市住房和城乡建设局老网站wordpress 插件不生效
  • 北京网站建设策划学习网站建设
  • 网站制作的前期主要是做好什么工作宣汉县建设局网站
  • 虚拟网站怎么做小米手机网站架构
  • 凡科网站的排名做不上去北京网站建设公司哪些好
  • 无锡自助建站软件免费视频推广的软件有哪些
  • 谷歌账号注册网站打不开江门网站推广技巧
  • 英国做deal的网站四川建设网官网登录
  • wordpress手机建站无锡网站设计系统
  • o2o网站建设方案ppt品牌建设工作计划
  • 单页移动网页建站教程做企业宣传网站
  • 企业网站建设费如何列支南京网站排名外包
  • php 企业 网站梅州网站建
  • 哈尔滨企业网站wordpress插件广告
  • 宁夏网站开发设计说明书室内设计效果图qq群
  • 深圳网站建设网络公司discuz企业网站模板
  • 网站建设课本小程序开发文档
  • 建设工程监理招标网站wordpress首页生成在
  • 企业建网站群私活网站开发多少钱
  • 秦皇岛网站制作小程序开发北京软件编程培训机构
  • 做红酒网站软件定制开发平台
  • 区块链技术做网站开发公司质量管理制度体系的情况说明
  • 一个专门做视频配音的网站河南科技网站建设
  • 网站制作哪些公司好wordpress 学院 模板
  • 扁平化风格 网站东营建设信息网最新消息
  • 凡客网站建设怎么样沈阳制作网站
  • 网站开发与实训报告网络规划设计师多少分通过