网站设计范文wordpress 管理插件
% VRP - 基于IVY算法的TWVRP最短距离求解
% 数据准备
 % 假设有一组客户点的坐标和对应的时间窗信息
 % 假设数据已经存储在 coordinates、timeWindows 和 demands 变量中
% 参数设置
 numCustomers = size(coordinates, 1); % 客户点数量
 vehicleCapacity = 100; % 车辆容量
 numVehicles = 5; % 车辆数量
% 构建距离矩阵
 distanceMatrix = zeros(numCustomers+1, numCustomers+1); % +1是为了包含仓库点
 for i = 1:numCustomers+1
 for j = 1:numCustomers+1
 distanceMatrix(i, j) = pdist([coordinates(i, 😃; coordinates(j, 😃], ‘euclidean’);
 end
 end
% IVY算法求解
 bestDistance = Inf;
 bestSolution = [];
 for iter = 1:100 % 迭代次数
 % 随机生成初始解
 solution = cell(numVehicles, 1);
 for k = 1:numVehicles
 % 随机选择一个客户点作为起始点
 startNode = randi(numCustomers) + 1; % +1是为了排除仓库点
 % 初始化路径
 path = [1, startNode, 1]; % 1代表仓库点
 % 计算剩余容量
 remainingCapacity = vehicleCapacity - demands(startNode);
 % 随机构建路径
 while remainingCapacity > 0
 validNodes = setdiff(2:numCustomers+1, path); % 排除已经访问过的点
 validDemands = demands(validNodes);
 feasibleNodes = validNodes(validDemands <= remainingCapacity);
 if isempty(feasibleNodes)
 break;
 end
 nextNode = randsample(feasibleNodes, 1);
 path = [path, nextNode];
 remainingCapacity = remainingCapacity - demands(nextNode);
 end
 solution{k} = path;
 end
% 评估解的距离
totalDistance = 0;
for k = 1:numVehiclespath = solution{k};for i = 1:length(path)-1totalDistance = totalDistance + distanceMatrix(path(i), path(i+1));end
end% 更新最优解
if totalDistance < bestDistancebestDistance = totalDistance;bestSolution = solution;
end
 
end
% 输出最优解距离和路径
 disp(‘Best Distance:’);
 disp(bestDistance);
 disp(‘Best Solution:’);
 for k = 1:numVehicles
 disp(bestSolution{k});
 end
