当前位置: 首页 > news >正文

广州市网站建设需要审批ui设计比较成功的网站页面

广州市网站建设需要审批,ui设计比较成功的网站页面,网页怎么做成app,非商业组织的网站风格词频统计 通过分析大量文本数据中的词频,可以识别常见词汇和短语,从而抽取文本的关键信息和概要,有助于识别文本中频繁出现的关键词,这对于理解文本内容和主题非常关键。同时,通过分析词在文本中的相对频率&#xff0…

词频统计

通过分析大量文本数据中的词频,可以识别常见词汇和短语,从而抽取文本的关键信息和概要,有助于识别文本中频繁出现的关键词,这对于理解文本内容和主题非常关键。同时,通过分析词在文本中的相对频率,可以帮助理解词在不同上下文中的含义和语境。

"纽约时报"评论数据集记录了有关《纽约时报》2017年1月至5月和2018年1月至4月发表的文章上的评论的信息。月度数据分为两个csv文件:一个用于包含发表评论的文章,另一个用于评论本身。评论的csv文件总共包含超过200万条评论,有34个特征,而文章的csv文件包含超过9000篇文章,有16个特征。

本实验需要提取其中的 articleID 和 snippet 字段进行词频统计

MapReduce

在Hadoop中,输入文件通常会通过InputFormat被分成一系列的逻辑分片,分片是输入文件的逻辑划分,每个分片由一个Mapper处理。

本实验中,WordCount通过MapReduce统计snippet 字段中每个单词出现的总次数。程序主要包括Mapper, Reducer, Driver三个部分。

自定义的Mapper和Reducer都要继承各自的父类。Mapper中的业务逻辑写在map()方法中,Reducer的业务逻辑写在reduce()方法中。整个程序还需要一个Driver来进行提交,提交的是一个描述了各种必要信息的job对象。

程序总体流程如下图所示。

Mapper

Mapper的主要任务是处理输入分片并生成中间键值对,这些键值对将被传递给Reducer进行进一步处理,也就是对应的Map的过程。

在本实验中,Mapper需要将这行文本中的单词提取出来,针对每个单词输出一个<word, 1>的<Key, Value>对。之后MapReduce会对这些<word,1>进行排序重组,将相同的word放在一起,形成<word, [1,1,1,1,1,1,1…]>的<Key,Value >结构并传递给Reducer。

Reducer

Reducer则以中间键值对为输入,将其按照键进行分组,并将每个组的值按一定规则合并成最终的输出。

注意在此阶段前,Hadoop框架会自行将中间键值对经过默认的排序分区分组,Key相同的单词会作为一组数据构成新的<Key, Value>对。

在本实验中,Reducer将集合里的1求和,再将单词(word)与这个和(sum)组成一个<Key, Value>,也就是<word, sum>输出。每一个输出就是一个单词和它的词频统计总和了。

Driver

Driver是一个程序的主入口,负责配置和启动整个MapReduce任务。Driver类通常包含了整个MapReduce作业的配置信息、作业的输入路径、输出路径等信息,并启动MapReduce作业的执行。

总结

该程序基于Hadoop MapReduce框架实现了简单的单词计数功能,适用于大规模文本数据的并行处理。


PSEUDO-CODE 2   WordCount(词频统计)


/* Map函数,处理每一行的文本 */

1:input <Key,Value>;                                   //Value使用Text类型表示文本行

2:从文本中提取文档ID和实际文本内容snippet;

3:使用空格、单引号和破折号作为分隔符,将文本snippet分词;

4:for 文本snippet中的每个单词:

5:     去除特殊字符后将<word,1>写入context,发射给Reducer;

6:end for

/* Reduce函数,处理相同键的所有值 */

1:input <Key,Value>,sum←0;             //来自Map的<word,[1,1,1…]>

2:for Value的每个1:

3:     累加计数sum += 1;


代码

import java.io.IOException;
import java.util.regex.*;
import java.util.Iterator;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
public class WordCount {public WordCount() {}public static void main(String[] args) throws Exception {Configuration conf = new Configuration();String[] otherArgs = (new GenericOptionsParser(conf, args)).getRemainingArgs();if(otherArgs.length < 2) {System.err.println("Usage: wordcount <in> [<in>...] <out>");System.exit(2);}Job job = Job.getInstance(conf, "word count");job.setJarByClass(WordCount.class);job.setMapperClass(WordCount.TokenizerMapper.class);job.setCombinerClass(WordCount.IntSumReducer.class);job.setReducerClass(WordCount.IntSumReducer.class);job.setOutputKeyClass(Text.class);job.setOutputValueClass(IntWritable.class); for(int i = 0; i < otherArgs.length - 1; ++i) {FileInputFormat.addInputPath(job, new Path(otherArgs[i]));}FileOutputFormat.setOutputPath(job, new Path(otherArgs[otherArgs.length - 1]));System.exit(job.waitForCompletion(true)?0:1);}public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable> {private static final IntWritable one = new IntWritable(1);private Text word = new Text();public TokenizerMapper() {}public void map(Object key, Text value, Mapper<Object, Text, Text, IntWritable>.Context context)throws IOException, InterruptedException {// Split DocID and the actual textString DocId = value.toString().substring(0, value.toString().indexOf("\t"));String value_raw =  value.toString().substring(value.toString().indexOf("\t") + 1);// Reading input one line at a time and tokenizing by using space, "'", and "-" characters as tokenizers.StringTokenizer itr = new StringTokenizer(value_raw, " '-");// Iterating through all the words available in that line and forming the key/value pair.while (itr.hasMoreTokens()) {// Remove special charactersword.set(itr.nextToken().replaceAll("[^a-zA-Z]", ""));if(word.toString() != "" && !word.toString().isEmpty()){context.write(word, one);}}}}public static class IntSumReducer extends Reducer<Text, IntWritable, Text, IntWritable> {private IntWritable result = new IntWritable();public IntSumReducer() {}public void reduce(Text key, Iterable<IntWritable> values, Reducer<Text, IntWritable, Text, IntWritable>.Context context) throws IOException, InterruptedException {int sum = 0;IntWritable val;for(Iterator i$ = values.iterator(); i$.hasNext(); sum += val.get()) {val = (IntWritable)i$.next();}this.result.set(sum);context.write(key, this.result);}}}

http://www.yayakq.cn/news/749622/

相关文章:

  • 企业网站建设包括2018年怎样做淘宝客网站
  • 上海企业网站建设制作免费关键词优化工具
  • 昆山app网站制作智能工程学院
  • 沈阳便宜做网站的知名平面广告设计公司
  • 网站开发协议百度广州网站订制开发
  • 怎么用自己的服务器做网站网站该怎么做链接
  • 一个网站两个空间石家庄兼职做网站
  • 北京市网站备案动力做网站
  • 为何建设银行网站无法登陆网站营销推广公司
  • 公司没网站怎么做dspwordpress phpwamp
  • 论坛网站开发框架angular公众号申请
  • 主题公园网站建设wordpress在国内很慢
  • 宜昌 房地产网站建设企业网站创建的步骤
  • 肇庆网站建设方案咨询网络推广公司运营
  • 石河子网站设计佛山网站优化排名推广
  • 教做鞋的网站武昌手机网站
  • 做外贸网站推广广州网站设计培训
  • 光明新区住房和建设局 官方网站sentos上部署.net网站
  • 贵阳商城网站开发网站开发中如何实现gps定位
  • 哪个网站做ppt赚钱向公司申请建设网站申请书
  • 怎么做浏览网站的小程序湖南网站推广优化
  • 使用cnnic证书的网站整合营销英文
  • 龙泉市建设局网站青岛网站建设开发外包
  • vue小程序开发教程深圳谷歌seo培训班
  • 淘宝客网站做的好的免费已备案二级域名网站
  • 建设个人网站的要求用html
  • 深圳市做网站的有那些公司网站开发语言有php
  • 软件营销网站团购网站模板
  • dede网站优化唐山网站开发公司
  • 网站右下角视频代码ico加网站