当前位置: 首页 > news >正文

合肥做机床的公司网站宁波五金网站建设

合肥做机床的公司网站,宁波五金网站建设,春雨直播免费视频,书写网站建设策划书在分享完即可统计又可可视化绘制的优秀可视化包后(具体内容可看 统计绘图 | 既能统计分析又能可视化绘制的技能 。就有小伙伴私信问我需要绘制出版级别的可视化图表有什么快速的方法?“。鉴于我是一个比较宠粉的小编,几天就给大家推荐一个技巧&#xff0…

在分享完即可统计又可可视化绘制的优秀可视化包后(具体内容可看 统计绘图 | 既能统计分析又能可视化绘制的技能 。就有小伙伴私信问我需要绘制出版级别的可视化图表有什么快速的方法?“。鉴于我是一个比较宠粉的小编,几天就给大家推荐一个技巧,让你快速绘制出符合出版要求绘图技能。主要内容如下:

  • R-ggpubr包主要类型函数介绍

  • R-ggpubr包主要案列展示

  • 更多详细的数据可视化教程,可订阅我们的店铺课程:

R-ggpubr包主要类型函数介绍

虽然在Python中我们也可以通过使用Matplotlib定制化出符合出版要求的图表,但这毕竟对使用者的绘图技能要求较高,当然也是还有部分轮子可以用的,详细请参考这篇:因为配图,SCI多次返修!?因为你还没发现这个Python科学绘图宝藏工具包。而我们今天则介绍一个高性能的R包-ggpubr,从名字就可以看出这个包的主要用途了。

  1. 官网: https://rpkgs.datanovia.com/ggpubr/index.html

  2. 几大绘图函数类型

这个包对于绘图类型分的较为详细,主要按照变量个数进行划分,详细介绍如下

  • 「绘制一个变量-X,连续」

    • ggdensity(): 密度图

    • stat_overlay_normal_density(): 覆盖法线密度图

    • gghistogram(): 直方图

    • ggecdf(): 经验累积密度函数

    • ggqqplot(): QQ图

  • 「绘制两个变量-X和Y,离散X和连续Y」

    • ggboxplot(): 箱形图

    • ggviolin(): 小提琴图

    • ggdotplot(): 点图

    • ggstripchart(): 条形图

    • ggbarplot(): 条形图

    • ggline(): 线图

    • ggerrorplot(): 错误图

    • ggpie(): 饼图

    • ggdonutchart(): 甜甜圈图

    • ggdotchart()、theme_cleveland(): 克利夫兰的点图

    • ggsummarytable()、ggsummarystats():添加摘要统计信息表

  • 「绘制两个连续变量」

    • ggscatter(): 散点图

    • stat_cor(): 将具有P值的相关系数添加到散点图中

    • stat_stars(): 将星星添加到散点图中

    • ggscatterhist(): 具有边际直方图的散点图

  • 「比较均值并添加p值」

    • compare_means(): 均值比较

    • stat_compare_means(): 将均值比较P值添加到ggplot

    • stat_pvalue_manual():手动将P值添加到ggplot

    • stat_bracket()、geom_bracket(): 将带有标签的括号添加到GGPlot

其他更多优秀函数,小伙伴们可自行查阅官网进行探索。

R-ggpubr包主要案列展示

  • Density plot

set.seed(1234)
wdata = data.frame(sex = factor(rep(c("F", "M"), each=200)),weight = c(rnorm(200, 55), rnorm(200, 58)))
ggdensity <- ggdensity(wdata, x = "weight", fill = "lightgray",add = "mean", rug = TRUE) +labs(title = "Example of <span style='color:#D20F26'>ggpubr::ggdensity function</span>",subtitle = "processed charts with <span style='color:#1A73E8'>ggdensity()</span>",caption = "Visualization by <span style='color:#DD6449'>DataCharm</span>") +hrbrthemes::theme_ipsum(base_family = "Roboto Condensed")  +theme( plot.title = element_markdown(hjust = 0.5,vjust = .5,color = "black",size = 20, margin = margin(t = 1, b = 12)),plot.subtitle = element_markdown(hjust = 0,vjust = .5,size=15),plot.caption = element_markdown(face = 'bold',size = 12),)

Density plot

  • Histogram plot

set.seed(1234)
wdata = data.frame(sex = factor(rep(c("F", "M"), each=200)),weight = c(rnorm(200, 55), rnorm(200, 58)))gghistogram <- gghistogram(wdata, x = "weight", fill = "sex",add = "mean", palette = c("lightgray", "gray50"),add_density = TRUE,rug = TRUE)+labs(title = "Example of <span style='color:#D20F26'>ggpubr::gghistogram function</span>",subtitle = "processed charts with <span style='color:#1A73E8'>gghistogram()</span>",caption = "Visualization by <span style='color:#DD6449'>DataCharm</span>") +hrbrthemes::theme_ipsum(base_family = "Roboto Condensed")  +theme( plot.title = element_markdown(hjust = 0.5,vjust = .5,color = "black",size = 20, margin = margin(t = 1, b = 12)),plot.subtitle = element_markdown(hjust = 0,vjust = .5,size=15),plot.caption = element_markdown(face = 'bold',size = 12),)

Histogram plot

  • QQ Plots

# Create some data format
set.seed(1234)
wdata = data.frame(sex = factor(rep(c("F", "M"), each=200)),weight = c(rnorm(200, 55), rnorm(200, 58)))# Basic QQ plot
ggqqplot <- ggqqplot(wdata, x = "weight") +labs(title = "Example of <span style='color:#D20F26'>ggpubr::ggqqplot function</span>",subtitle = "processed charts with <span style='color:#1A73E8'>ggqqplot()</span>",caption = "Visualization by <span style='color:#DD6449'>DataCharm</span>") +hrbrthemes::theme_ipsum(base_family = "Roboto Condensed")  +theme( plot.title = element_markdown(hjust = 0.5,vjust = .5,color = "black",size = 20, margin = margin(t = 1, b = 12)),plot.subtitle = element_markdown(hjust = 0,vjust = .5,size=15),plot.caption = element_markdown(face = 'bold',size = 12),)

QQ Plots

  • Scatter plot

# Load data
data("mtcars")
df <- mtcars
df$cyl <- as.factor(df$cyl)
ggscatter <- ggscatter(df, x = "wt", y = "mpg",add = "loess", conf.int = TRUE,cor.coef = TRUE, cor.coeff.args = list(method = "pearson", label.x = 5,label.y=35, label.size=25,label.sep = "\n"))+labs(title = "Example of <span style='color:#D20F26'>ggpubr::ggscatter function</span>",subtitle = "processed charts with <span style='color:#1A73E8'>ggscatter()</span>",caption = "Visualization by <span style='color:#DD6449'>DataCharm</span>") +hrbrthemes::theme_ipsum(base_family = "Roboto Condensed")  +theme( plot.title = element_markdown(hjust = 0.5,vjust = .5,color = "black",size = 20, margin = margin(t = 1, b = 12)),plot.subtitle = element_markdown(hjust = 0,vjust = .5,size=15),plot.caption = element_markdown(face = 'bold',size = 12),)

Scatter plot

  • Add Manually P-values to a ggplot

ToothGrowth$dose <- as.factor(ToothGrowth$dose)
# Comparisons against reference
stat.test <- compare_means(len ~ dose, data = ToothGrowth, group.by = "supp",method = "t.test", ref.group = "0.5"
)bp <- ggbarplot(ToothGrowth, x = "supp", y = "len",fill = "dose", palette = "jco",add = "mean_sd", add.params = list(group = "dose"),position = position_dodge(0.8))
bp + stat_pvalue_manual(stat.test, x = "supp", y.position = 33,label = "p.signif",position = position_dodge(0.8)
) + labs(title = "Example of <span style='color:#D20F26'>ggpubr::stat_pvalue_manual function</span>",subtitle = "processed charts with <span style='color:#1A73E8'>stat_pvalue_manual()</span>",caption = "Visualization by <span style='color:#DD6449'>DataCharm</span>") +hrbrthemes::theme_ipsum(base_family = "Roboto Condensed")  +theme( plot.title = element_markdown(hjust = 0.5,vjust = .5,color = "black",size = 20, margin = margin(t = 1, b = 12)),plot.subtitle = element_markdown(hjust = 0,vjust = .5,size=15),plot.caption = element_markdown(face = 'bold',size = 12),)

Add Manually P-values to a ggplot

  • Draw a Textual Table

# data
df <- head(iris)# Default table
table1 <- ggtexttable(df, rows = NULL)
table2 <- ggtexttable(df, rows = NULL, theme = ttheme("blank")) %>%tab_add_hline(at.row = 1:2, row.side = "top", linewidth = 2)

table1

table2

总结

今天推文我们介绍了「R-ggpubr」实现极少代码绘制出符合期刊要求的可视化图表,极大省去了绘制单独图表元素的时间,为统计分析及可视化探索提供非常便捷的方式,感兴趣的小伙伴可探索更多的绘图函数哦~~

http://www.yayakq.cn/news/392553/

相关文章:

  • 泰安网站销售公司WordPress经济主题
  • 爱润妍网站开发南阳网站seo
  • 网站转移码太原百度seo排名软件
  • 安做省民改厅网站wordpress 商品展示
  • 资源丰富免费的网站推荐排名合肥百度团购网站建设
  • 电子商务网站建设合同范本福州 网站设计公司
  • 自己可以做英文网站么商务邮箱注册
  • 新邱建设网站企业做网站需要准备什么资料
  • 广告联盟做网站怎样创建一个app
  • php网站优化长春财经学院专业
  • 制作网站首先做的工作软文推广代写代发
  • 厦门网站建设求职简历vr网站开发技术
  • 小型企业网站建设旅游景点网论文网站建设要会什么软件
  • 柴沟堡做网站企业网站seo优帮云
  • 佛山电商网站建设视频网站怎么做网站引流
  • 怎么查网站备案的公司广西seo网站推广
  • 深圳市建设工程交易服务中心网站html期末作业网页代码
  • 网站的推广一般有什么方式国外购物网站怎么做
  • WordPress众筹网站主题做电影网站需要什么条件
  • 如何做网站demo做网站排名推广效果怎么样
  • 揭阳网站免费建站昆明做网站建设硬件设备
  • 网站建设方案总结做网站需要的图片去哪找
  • 整站seoseo优化网站建设及发展
  • 高端建站方案免费营销网站制作
  • 网站 导航条网站制作案例价格
  • “一个”网站扬州鼎盛开发建设有限公司网站
  • 180天做180个网站网站cms系统下载
  • 镇江网站优化推广工作室英文
  • 网站开发的目的相关书籍百度售后电话人工服务
  • 沈阳互联网公司排名西安seo代理计费