当前位置: 首页 > news >正文

怎么查网站到期时间崇州园区营销网站建设

怎么查网站到期时间,崇州园区营销网站建设,wordpress 回复 楼中楼,苏州沧浪区做网站一.Mnist分类任务流程详解 1.1.引入数据集 Mnist数据集是官方的数据集,比较特殊,可以直接通过%matplotlib inline自动下载,博主此处已经完成下载,从本地文件中引入数据集。 设置数据路径 from pathlib import Path# 设置数据路…

一.Mnist分类任务流程详解

1.1.引入数据集

Mnist数据集是官方的数据集,比较特殊,可以直接通过%matplotlib inline自动下载,博主此处已经完成下载,从本地文件中引入数据集。

设置数据路径

from pathlib import Path# 设置数据路径
# PATH = Path("data/minst")
DATA_PATH = Path("data")
PATH = DATA_PATH / "mnist"# PATH.mkdir(parents=True, exist_ok=True)  # 父目录不存在时创建父目录'''
parents:如果父目录不存在,是否创建父目录。
exist_ok:只有在目录不存在时创建目录,目录已存在时不会抛出异常。
'''

读取数据

import pickle
import gzip# 读取数据
'''
gzip.open的作用是解压gzip文件
with gzip.open(PATH.as_posix(), "rb") as f:((x_train, y_train), (x_valid, y_valid), _) = pickle.load(f, encoding="latin-1")
'''
# rb表示以二进制格式打开一个文件用于只读
# 打开PATH路径的文件用以接下来的操作
# 保存数据的文件类型为pickle,所以用pickle.load打开文件,文件此处设置的别名为f
with open(PATH.as_posix(), "rb") as f:((x_train, y_train), (x_valid, y_valid), _) = pickle.load(f, encoding="latin-1")'''
as.posix()的作用:
#返回使用斜杠(/)分割路径的字符串
#将所有连续的正斜杠、反斜杠,统一修改为单个正斜杠
#相对路径 './' 替换为空,'../' 则保持不变。
'''

测试引入数据集是否成功

from matplotlib import pyplot
import numpy as np# 测试数据集是否导入成功
pyplot.imshow(x_train[0].reshape((28, 28)), cmap="gray")
print(x_train.shape)

1.2.数据类型转换

数据需要转换成tensor类型才能参与后续建模训练

import torch# 通过map映射,将x_train等数据全都转为torch.tensor类型。tensor类型才能参与后续建模训练
x_train, y_train, x_valid, y_valid = map(torch.tensor, (x_train, y_train, x_valid, y_valid)
)

测试数据类型是否转换成功

n, c = x_train.shape
x_train, x_train.shape, y_train.min(), y_train.max()
print(x_train, y_train)
print(x_train.shape)
print(y_train.min(), y_train.max())

数据均为tensor类型,转换成功

1.3.设置损失函数

import torch.nn.functional as F# 设置损失函数,此处使用的损失函数为交叉熵
loss_func = F.cross_entropy 

测试损失函数

手动设置初始权重和偏置值进行测试,真实情况下系统会自动帮我们初始化

bs = 64
xb = x_train[0:bs]  # a mini-batch from x ,xb是x_train中0~64项的数
yb = y_train[0:bs]# 实际操作中模型会自动定义权重参数,不用我们手动设置
# 因为输入数据是784x1个像素点,而最后得到的是十个类别,所以权重矩阵的大小为784x10。
weights = torch.randn([784, 10], dtype = torch.float,  requires_grad = True) 
bs = 64
# bias矩阵的大小取决于最后的类别数量,此处的bias矩阵为10x1
bias = torch.zeros(10, requires_grad=True)def model(xb):return xb.mm(weights) + bias  # .mm()是矩阵相乘 .mul()则是对应位相乘# 损失函数是用来度量模型的预测值f(x)与真实值Y的差异程度的运算函数,此处model(xb)得到的是经过权重计算的预测值,yb是真实值。给损失函数传入的参数即为预测值和真实值。
print(loss_func(model(xb), yb))

1.4.神经网络构造 

此处所选用的是传统神经网络完成Minist分类任务

from torch import nn# 创建一个模型类,注意一定要继承于nn.Module(取决于你要创建的网络类型)
class Mnist_NN(nn.Module):def __init__(self):# 调用父类的构造函数super().__init__()# 创建两个隐层 由784->128->256->10self.hidden1 = nn.Linear(784, 128)self.hidden2 = nn.Linear(128, 256)# 创建输出层,由256->10,即最后输出十个类别self.out  = nn.Linear(256, 10)self.dropout = nn.Dropout(0.5)# torch框架需要自己定义前向传播,反向传播由框架自己实现# 传入的x是一个batch x 特征值def forward(self, x):# x经过第一个隐层x = F.relu(self.hidden1(x))# x经过dropout层x = self.dropout(x)# x经过第二个隐藏x = F.relu(self.hidden2(x))# x经过dropout层x = self.dropout(x)# x经过输出层x = self.out(x)return x

测试构造的神经网络

net = Mnist_NN()
print(net)

查看网络中构建好的权重和偏置项 

for name, parameter in net.named_parameters():print(name, parameter,parameter.size())
 

1.5.使用TensorDataset和DataLoader简化数据 

from torch.utils.data import TensorDataset
from torch.utils.data import DataLoader# TensorDataset获取数据,再由DataLoader打包数据传给GPU(包的大小位batch_size)
# 训练集一般打乱顺序,验证集不打乱顺序
train_ds = TensorDataset(x_train, y_train)
train_dl = DataLoader(train_ds, batch_size=bs, shuffle=True)valid_ds = TensorDataset(x_valid, y_valid)
valid_dl = DataLoader(valid_ds, batch_size=bs * 2)def get_data(train_ds, valid_ds, bs):return (DataLoader(train_ds, batch_size=bs, shuffle=True),DataLoader(valid_ds, batch_size=bs * 2),)

1.6.模型训练

优化器设置

from torch import optim
def get_model():model = Mnist_NN() # 使用先前创建的类构造一个网络return model, optim.SGD(model.parameters(), lr=0.001) # 返回值为模型和优化器# 优化器的设置,optim.SGD(),参数分别为:要优化的参数、学习率def loss_batch(model, loss_func, xb, yb, opt=None):# 计算损失,参数为预测值和真实值loss = loss_func(model.forward(xb), yb)  # 预测值由定义的前向传播过程计算处# 如果存在优化器if opt is not None: loss.backward()  # 反向传播,算出更新的权重参数opt.step()  # 执行backward()计算出的权重参数的更新opt.zero_grad()  # torch会进行迭代的累加,通过zero_grad()将之前的梯度清空(不同的迭代之间应当是没有关系的)return loss.item(), len(xb)

常用优化器:

  • 随机梯度下降(SGD, stochastic gradient descent)
  • SGDM(加入了一阶动量)
  • AdaGrad(加入了二阶动量)
  • RMSProp
  • Adam

模型训练

import numpy as np#epoch和batch的关系,
#eg:有10000个数据,batch=100,则一个1epoch需要训练100个batch(1一个epoch就是训练整个数据一次)
# 定义训练函数,传入的参数分别为:迭代的次数、模型、损失函数、优化器、训练集、验证集
def fit(steps, model, loss_func, opt, train_dl, valid_dl):for step in range(steps):# 训练模式:model.train()  for xb, yb in train_dl:loss_batch(model, loss_func, xb, yb, opt)  # 得到由loss_batch更新的权重值# 验证模式:model.eval()   with torch.no_grad():  # 没有梯度,即不更新权重参数# zip将两个矩阵配对,例如两个一维矩阵配对成一个二维矩阵,下述情况中即为一个losses对应一个nums -> [(losses,nums)]。zip*是解包操作,即将二维矩阵又拆分成一维矩阵,并返回拆分得到的一维矩阵。losses, nums = zip(*[loss_batch(model, loss_func, xb, yb) for xb, yb in valid_dl])val_loss = np.sum(np.multiply(losses, nums)) / np.sum(nums)  # 计算平均损失:对应的损失值和样本数相乘的总和 / 总样本数print('当前step:'+str(step), '验证集损失:'+str(val_loss))

二.完整代码 

from pathlib import Path
import pickle
import gzipfrom matplotlib import pyplot
import numpy as npimport torchimport torch.nn.functional as Ffrom torch import nnfrom torch.utils.data import TensorDataset
from torch.utils.data import DataLoaderfrom torch import optimimport numpy as np# 设置数据路径
DATA_PATH = Path("data")
PATH = DATA_PATH / "mnist.pkl"# PATH.mkdir(parents=True, exist_ok=True)'''
parents:如果父目录不存在,是否创建父目录。
exist_ok:只有在目录不存在时创建目录,目录已存在时不会抛出异常。
'''# 读取数据
'''
gzip.open的作用是解压gzip文件
with gzip.open(PATH.as_posix(), "rb") as f:((x_train, y_train), (x_valid, y_valid), _) = pickle.load(f, encoding="latin-1")
'''
# rb表示以二进制格式打开一个文件用于只读
# 打开PATH路径的文件用以接下来的操作
# 保存数据的文件类型为pickle,所以用pickle.load打开文件,文件此处设置的别名为f
with open(PATH.as_posix(), "rb") as f:((x_train, y_train), (x_valid, y_valid), _) = pickle.load(f, encoding="latin-1")'''
as.posix()的作用:
#返回使用斜杠(/)分割路径的字符串
#将所有连续的正斜杠、反斜杠,统一修改为单个正斜杠
#相对路径 './' 替换为空,'../' 则保持不变。
''''''
# 测试数据集是否导入成功
pyplot.imshow(x_train[0].reshape((28, 28)), cmap="gray")
print(x_train.shape)
'''# 数据类型转换为torch# 通过map映射,将x_train等数据全都转为torch.tensor类型。tensor类型才能参与后续建模训练
x_train, y_train, x_valid, y_valid = map(torch.tensor, (x_train, y_train, x_valid, y_valid)
)# 测试数据类型是否转换成功
'''
n, c = x_train.shape
x_train, x_train.shape, y_train.min(), y_train.max()
print(x_train, y_train)
print(x_train.shape)
print(y_train.min(), y_train.max())
'''# 设置损失函数
loss_func = F.cross_entropybs = 64
xb = x_train[0:bs]  # a mini-batch from x ,xb是x_train中0~64项的数
yb = y_train[0:bs]''' 
# 手动初始化进行测试# 实际操作中模型会自动定义权重参数,不用我们手动设置
# 因为输入数据是784x1个像素点,而最后得到的是十个类别,所以权重矩阵的大小为784x10。
weights = torch.randn([784, 10], dtype = torch.float,  requires_grad = True)
bs = 64
# bias矩阵的大小取决于最后的类别数量,此处的bias矩阵为10x1
bias = torch.zeros(10, requires_grad=True)def model(xb):return xb.mm(weights) + bias  # .mm()是矩阵相乘 .mul()则是对应位相乘# 损失函数是用来度量模型的预测值f(x)与真实值Y的差异程度的运算函数,此处model(xb)得到的是经过权重计算的预测值,yb是真实值。给损失函数传入的参数即为预测值和真实值。
print(loss_func(model(xb), yb))
'''# 创建一个模型类,注意一定要继承于nn.Module(取决于你要创建的网络类型)
class Mnist_NN(nn.Module):def __init__(self):# 调用父类的构造函数super().__init__()# 创建两个隐层 由784->128->256->10self.hidden1 = nn.Linear(784, 128)self.hidden2 = nn.Linear(128, 256)# 创建输出层,由256->10,即最后输出十个类别self.out = nn.Linear(256, 10)self.dropout = nn.Dropout(0.5)# torch框架需要自己定义前向传播,反向传播由框架自己实现# 传入的x是一个batch x 特征值def forward(self, x):# x经过第一个隐层x = F.relu(self.hidden1(x))# x经过dropout层x = self.dropout(x)# x经过第二个隐藏x = F.relu(self.hidden2(x))# x经过dropout层x = self.dropout(x)# x经过输出层x = self.out(x)return x'''
# 测试构造的网络模型
net = Mnist_NN()
print(net)打印权重和偏置项
for name, parameter in net.named_parameters():print(name, parameter,parameter.size())
'''# TensorDataset获取数据,再由DataLoader打包数据传给GPU
# 训练集一般打乱顺序,验证集不打乱顺序
train_ds = TensorDataset(x_train, y_train)
train_dl = DataLoader(train_ds, batch_size=bs, shuffle=True)valid_ds = TensorDataset(x_valid, y_valid)
valid_dl = DataLoader(valid_ds, batch_size=bs * 2)def get_data(train_ds, valid_ds, bs):return (DataLoader(train_ds, batch_size=bs, shuffle=True),DataLoader(valid_ds, batch_size=bs * 2),)# 优化器设置
def get_model():model = Mnist_NN()return model, optim.SGD(model.parameters(), lr=0.001)# 优化器的设置,optim.SGD(),参数分别为:要优化的参数、学习率def loss_batch(model, loss_func, xb, yb, opt=None):# 计算损失,参数为预测值和真实值loss = loss_func(model.forward(xb), yb)  # 预测值由定义的前向传播过程计算处# 如果存在优化器if opt is not None:loss.backward()  # 反向传播,算出更新的权重参数opt.step()  # 执行backward()计算出的权重参数的更新opt.zero_grad()  # torch会进行迭代的累加,通过zero_grad()将之前的梯度清空(不同的迭代之间应当是没有关系的)return loss.item(), len(xb)# 模型训练
# epoch和batch的关系,
# eg:有10000个数据,batch=100,则一个1epoch需要训练100个batch(1一个epoch就是训练整个数据一次)
# 定义训练函数,传入的参数分别为:迭代的次数、模型、损失函数、优化器、训练集、验证集
def fit(steps, model, loss_func, opt, train_dl, valid_dl):for step in range(steps):# 训练模式:model.train()for xb, yb in train_dl:loss_batch(model, loss_func, xb, yb, opt)  # 得到由loss_batch更新的权重值# 验证模式:model.eval()with torch.no_grad():  # 没有梯度,即不更新权重参数# zip将两个矩阵配对,例如两个一维矩阵配对成一个二维矩阵,下述情况中即为一个losses对应一个nums -> [(losses,nums)]。zip*是解包操作,即将二维矩阵又拆分成一维矩阵,并返回拆分得到的一维矩阵。losses, nums = zip(*[loss_batch(model, loss_func, xb, yb) for xb, yb in valid_dl])val_loss = np.sum(np.multiply(losses, nums)) / np.sum(nums)  # 计算平均损失:对应的损失值和样本数相乘的总和 / 总样本数print('当前step:'+str(step), '验证集损失:'+str(val_loss))# 输出
train_dl, valid_dl = get_data(train_ds, valid_ds, bs)
model, opt = get_model()
fit(25, model, loss_func, opt, train_dl, valid_dl)# 准确率的计算
correct = 0
total = 0
for xb,yb in valid_dl:outputs = model(xb)_, predicted = torch.max(outputs.data,1)  # 返回最大的值和对应的列索引(列索引在此处就是对应的类别)    (, 0)则返回行索引total += yb.size(0)  # yb的样本数correct += (predicted == yb).sum().item( ) # .sum()返回验证正确了的样本数,item()从tensor数据类型中取值,方便后续的画图等(tensor数据类型不好画图)print('Accuracy of the network on the 10000 test image: %d %%' %(100*correct/total))

三.输出结果

http://www.yayakq.cn/news/360523/

相关文章:

  • 湛江做网站seo湖南广告优化
  • 网站建设swot市场分析临沂森工木业有限公司
  • 网站案例英文新浪网页游戏
  • 用动易做的诗歌协会网站推荐几个网站图片网站
  • 成都教育网站建设公司价格自适应网页模板制作教程
  • 内蒙做网站网建网络科技有限公司
  • 做网站合成APP网站流量指的是什么意思
  • 网站运营技巧网站建设都分几个阶段
  • 制作公司工作网站域名怎么卖
  • 绿色电器公司网站psd模板北京网站seo设计
  • 下载网站后怎么做的网站挖掘工具
  • 上海网站建设选缘魁-企查淄博网站制作企业营销
  • 东莞电商建站软件制作app
  • 虚拟主机销售网站电商创业
  • 如何自己做外贸网站洛阳住房和城乡建设厅网站
  • 青岛建站公司电话现在公司做各网站要多少钱
  • 宝安医院网站建设定制网站和模板网站及仿站的区别
  • 则么做网站注册帐号
  • 网站排名关键词wordpress修改注册
  • 投资网站开发铁总建设函网站
  • 网站制作公司制作网站慈溪网站优化
  • 公司手机版网站制作微营销app
  • 坪地网站建设包括哪些wordpress 获取导航栏
  • 网站导航页面制作网络营销是什么的产生主要源于网络市场的复杂性
  • html5 手机网站开发叫才怎样开一个小贸易公司
  • 江山市建设厅网站网站开发外包网站
  • 如何用ppt做网站太原手机微网站建设
  • saas建站工具库存管理软件手机版
  • 做搜狗pc网站软件百度移动端优化
  • 网站建设和维护费怎么摊销百度竞价广告