当前位置: 首页 > news >正文

哪个电商平台最好seo值怎么提高

哪个电商平台最好,seo值怎么提高,怎么呢搜到自己建设的网站,aspx网站开发 案例1. 时序预测背景 时序数据,就是序列随时间变化的数据。时间序列分析,一般有时域和频域两种分析方法。时序预测的本质是在时域和频域层面探索时间序列变化的内在规律。 下图描述的是时域(temporal domain),横坐标是时…

1. 时序预测背景

时序数据,就是序列随时间变化的数据。时间序列分析,一般有时域和频域两种分析方法。时序预测的本质是在时域频域层面探索时间序列变化的内在规律

下图描述的是时域(temporal domain),横坐标是时间,纵坐标是某个测量信号的数值。时域能够最直观地反映序列随时间的变化。

时域分析一般包括周期、季节趋势这三类规律:

  • 周期性:重复的上升、下降过程,从哪来回哪去;

  • 季节性:固定频率的上升、下降,多为先验因素

  • 趋势性:长期保持增长或者下降。

另一种时序的分析方法是频域分析,下图展示的就是某个时间序列的频域(frequency domain),反映的是序列频率的变化,横坐标是信号的频率,纵坐标是信号的振幅或能量等物理量。频域分析有个重要的概念叫做谱密度,其核心思想是:信号是由少数主频叠加而成的。因此往往在时序层面难以分析时间序列变化的内在规律,会将时序通过FFT等手段转变为频域以及采用小波变换等方法进行辅助分析。

图片

上述这一思想在其他领域也会频繁被使用,例如将时间序列进行主成分分解等。

时间序列预测模型,常用的机器学习模型主要包括以下3类:ARIMA,Prophet,LGB。这3类模型的优缺点如下:

(1)ARIMA

①优点

  • 简单易行,可解释性强;

  • 数据量要求低;

  • 计算速度较快,可以对每个站在线拟合推理;

②缺点

  • 仅支持单变量;

  • 无法特征工程;

  • 准确率低;

③适用场景:基于统计学方法,项目初期冷启动

(2)Prophet

①优点

  • 简单易行,可解释性强;

  • 数据量要求低;

  • 加入先验知识(节假日);

  • 计算速度更快,可以对每个站在线拟合推理;

②缺点

  • 仅支持单变量;

  • 无法特征工程;

  • 准确率较低;

③适用场景:项目初期迭代

(3)LGB

①优点

  • 准确率较高;

  • 简单易行,可解释性强;

  • 支持批量预测,计算速度更快;

②缺点

  • 迭代模型等于迭代特征,但是迭代特征存在瓶颈;

  • 类别特征利用不充分;

③适用场景:项目中期迭代

3.深度学习模型

前文提到,机器学习的可操作性以及模型效果都是有限的,会遇到瓶颈,因此引入深度学习模型

① 深度学习模型架构

时序预测任务所涉及到的CNNs、RNNs和Transformers等模型都属于生成模型,具有统一的架构(unified architecture),这样的架构有两个重点部分,一个是Embedding引擎部分,另一个是编码器-解码器部分,如下图所示:

  • TCN模型的编码器和解码器主要是1D卷积网络;

  • CRNN模型的编码器和解码器主要是1D卷积网络和RNN网络;

  • Informer模型的编码器和解码器主要是Transformer网络;

  • DCN模型的编码器和解码器主要是2D卷积网络;

2. 时序预测痛点:

一个是节假日时间不固定问题,另一个是时间先验问题。

  • Temporal EmbeddingTemporal Embedding主要用来解决两个问题,一个是节假日时间不固定问题,另一个是时间先验问题。

1. 对于第一个节假日不固定问题,我们的节假日包括阳历节日农历节日;根据序列的时间周期可以拆分成小时、天、周、月、年等常规周期;

对于节假日时间的对齐方式,包括硬对齐和软对齐两种方式。

  1. 硬对齐主要指序列按照周、月、年等方式进行序列对齐,
  2. 软对齐主要是指将序列进行傅里叶变换(时序->频域),找到序列的 主频,借助序列的频域信息进行对齐

图片

2. 对于第二个时间先验问题,如下图所示,预测的时间数据已知,但是 其它相关输入变量 未知,这就造成了输入数据的维度不一致

图片

对于上述问题,通过填充 未知的其他变量 保证 输入数据的 维度一致,并根据位置的标记 区分 已知变量未知变量,最终可以得到输出的预测变量。

图片

2. 卷积模块设计经验

DCN部分中卷积层的设计,首先面临如下的思考:假设输入序列长度等于L,第i个卷积层的卷积核大小等于2i+1,步长等于1,需要多少卷积层?

这里涉及到两个概念:

  • 因果卷积

  • 时间序列本身存在因果关系,即在某一时间点t,只能获取历史信息,而无法获取未来信息;

  • 使用下图所示的单边卷积,用来保证序列的时间因果关系。

图片

  • 感受野

  • 感受野主要是指将一个特征点映射回到原始输入,所覆盖的范围

  • 需要保证卷积神经网络可以覆盖到 输入时间序列的长度范围

图片

  • 感受野可以通过下图的表格计算,得到的n就是需要设置的卷积层数

    • 第i个卷积层的卷积核大学: 2i+1

    • 感受野: i^2+i+1

图片

确定了卷积层的层数,将卷积层通过残差层子模块,像搭积木一样连接成整体的网络模块。

图片

4.模型融合

模型融合方面,有三个问题值得思考:

  • 加法还是减法?

    • 减法 主要包括残差、GBDT、Shortcut等;

    • 加法 主要包括stacking等方法

  • 分类还是回归?

    • 传统的预测一般是回归问题

    • 类问题往往会涉及概率问题,通过投票选择可以获得一定的信息;

  • 向上、向下还是躺平?

    • 使用基模型进行预测,可通过强化学习对预测效果进行反馈与激励,引导模型自主学习。

http://www.yayakq.cn/news/163113/

相关文章:

  • 郑州做网站建设公司建设网站怎么做
  • 专业外贸网站wordpress主题手机版
  • 广州网站建设公司哪个好行情宝app下载
  • 东阳网站建设方案wordpress自媒体二号
  • 研究生院 网站 建设重庆seo网站管理
  • 拓展培训东莞网站建设网站建设策划书色彩设计方案
  • 天津做app和网站的公司建设网站有哪些目的
  • 免费的舆情网站app下载app软件开发的费用设计
  • 电商网站维护做网站有什么比较好看的动效
  • 淘宝购买网站建设系统安装wordpress
  • 东风地区网站建设价格网站建设过程规划和准备阶段
  • 四川网站制作哪家好中国交通建设集团官方网站
  • 给别人做设计的网站企业网站推广最有效的方法
  • 微信生活门户网站源码网站制作的一般步骤
  • 外贸网站做的作用是什么ui网站设计模板
  • wordpress 外贸建站怎么自做网站
  • 简述网站内容如何优化成都推广公司联系电话
  • 工程建设企业网站国家高新技术企业认定条件和要求
  • 网站开发及服务合同网站开发总结 优帮云
  • 网站技术开发网站建设福建
  • 长沙建设网站企业wordpress教程 2015
  • 佛山企业如何建网站深圳横岗网站建设
  • 网站布局怎么设计做物流的用什么网站配货
  • 建网站行业宁波做网站费用
  • 兰州企业 网站建设网站建设与维护兼职
  • 网页设计与制作建立站点实践报告临沂网站制作报价
  • 一个网站需要哪些技术东营外贸型网站设计
  • 网站的相关性 实用性外包推广服务
  • 2017设计工作室做网站wordpress要更新
  • 淄博网站关键词优化怎么做网站出肉狗