当前位置: 首页 > news >正文

最新手机网站推荐嘉兴优化网站价格

最新手机网站推荐,嘉兴优化网站价格,大学生兼职网网站建设计划书,wordpress重装空白目录 介绍: 模板: 案例:哪些原因影响结婚率 数据标准化: 灰色关联度系数: 完整代码: 结果: 介绍: 灰色关联度是一种多指标综合评价方法,用于分析和评价不同指标之…

目录

介绍:

模板:

案例:哪些原因影响结婚率

 数据标准化:

灰色关联度系数:

完整代码:

结果: 

介绍:

灰色关联度是一种多指标综合评价方法,用于分析和评价不同指标之间的关联程度。它可以用于确定多个因素之间的相关性,以及它们对某个问题或现象的影响程度。

灰色关联度根据数据的相对大小和发展趋势,将指标划分为灰色数列,然后通过计算各指标之间的相对关联度来确定其关联程度。

灰色关联度的计算过程包括以下几个步骤:
1. 数据标准化:将各指标的原始数据进行标准化处理,将其转化为无量纲的数据。
2. 累积生成:将各指标数据按照一定顺序进行累积生成,得到灰色数列。
3. 关联系数计算:计算各指标与问题或现象之间的关联度,得到关联系数。
4. 排序和评价:根据关联系数对指标进行排序,评价其对问题或现象的影响程度。

通过灰色关联度分析,可以帮助人们理解指标之间的关系,并进一步确定影响问题或现象的主要因素。这种方法常用于战略决策、经济发展、工程管理等领域,具有较高的应用价值。

模板:

import numpy as npdef gray_relation_coefficient(x, y):'''计算两个序列的灰色关联度参数:x: 序列x(一维数组)y: 序列y(一维数组)返回值:关联度值(float)'''n = len(x)# 数据标准化x_mean = np.mean(x)y_mean = np.mean(y)x_std = np.std(x)y_std = np.std(y)x_normalized = (x - x_mean) / x_stdy_normalized = (y - y_mean) / y_std# 构造灰色数列x_cumulative = np.cumsum(x_normalized)y_cumulative = np.cumsum(y_normalized)# 计算关联系数d = np.abs(x_cumulative - y_cumulative)delta = np.max(d)rho = 0.5relation_coefficient = (rho * delta + 1) / (d + rho * delta + 1)return relation_coefficient# 测试示例
x = np.array([1, 2, 3, 4, 5])
y = np.array([2, 5, 7, 9, 11])relation_coefficient = gray_relation_coefficient(x, y)
print("关联度值:", relation_coefficient)

案例:哪些原因影响结婚率

 数据标准化:

def normalization(data1):[m, n] = data1.shape  # 得到行数和列数data2 = data1.astype('float')data3 = data2ymin = 0.001ymax = 1for j in range(0, n):d_max = max(data2[:, j])d_min = min(data2[:, j])data3[:, j] = (ymax - ymin) * (data2[:, j] - d_min) / (d_max - d_min) + ymin#print(data3)return data3

灰色关联度系数:

 

 

def Score(data):# 得到其他列和参考列相等的绝对值data3=data[n, m] = data3.shape#print(n)for i in range(1, m):data3[:, i] = np.abs(data3[:, i] - data3[:, 0])# 得到绝对值矩阵的全局最大值和最小值data4 = data3[:, 1:m]d_max = np.max(data4)d_min = np.min(data4)a = 0.5  # 定义分辨系数# 计算灰色关联矩阵data4 = (d_min + a * d_max) / (data4 + a * d_max)score = np.mean(data4, axis=0)return score

 完整代码:

# coding=gbk
import pandas as pd
import numpy as np
def normalization(data1):[m, n] = data1.shape  # 得到行数和列数data2 = data1.astype('float')data3 = data2ymin = 0ymax = 1for j in range(0, n):d_max = max(data2[:, j])d_min = min(data2[:, j])data3[:, j] = (ymax - ymin) * (data2[:, j] - d_min) / (d_max - d_min) + ymin#print(data3)return data3def Score(data):# 得到其他列和参考列相等的绝对值data3=data[n, m] = data3.shape#print(n)for i in range(1, m):data3[:, i] = np.abs(data3[:, i] - data3[:, 0])# 得到绝对值矩阵的全局最大值和最小值data4 = data3[:, 1:m]d_max = np.max(data4)d_min = np.min(data4)a = 0.5  # 定义分辨系数# 计算灰色关联矩阵data4 = (d_min + a * d_max) / (data4 + a * d_max)print("灰色关联矩阵:")print(data4)score = np.mean(data4, axis=0)return scoreif __name__ == '__main__':# 导入数据data = pd.read_excel('D:\\桌面\\建模\\6\\代码\\marry.xlsx')# print(data)# 提取变量名label_need = data.keys()[1:]# print(label_need)# 提取上面变量名下的数据data1 = data[label_need].values#print(data1)data3=normalization(data1)#标准化scores=Score(data3)#算灰色关联度[m, n] = data1.shape  # 得到行数和列数#print(data)print()for i in range(1, n):print(label_need[0], "与", label_need[i], "的灰色关联度", scores[i - 1])

结果: 

http://www.yayakq.cn/news/170030/

相关文章:

  • 丰台建设公司网站网站做的好的公司
  • 网站标签图片修改虚拟网站多少钱
  • 便宜购 网站建设wordpress 连接ftp
  • 溧阳企业网站建设天津建设工程信息网投标信息系统登录
  • 涿鹿网站建设好看的网页设计模板
  • 关于asp.net的网站模板wordpress主页怎么做
  • 怎么做刷网站流量生意风景网页制作模板
  • 二级域名网站查询入口哈尔滨网络招聘
  • 阿里云自助建站教程怎么制定网站
  • 网站开发作业个人博客网站制作搭建
  • 制作旅游网站简单开锁公司做网站
  • 自己做发小说网站wordpress目录扫描
  • 1营销型网站建设山西建设执业注册中心网站
  • 湖南大钧工程建设有限公司网站四川建设厅网上查询网站
  • 大型网站后台登录地址一般是如何设置的设计公司网站模板
  • 太原做网站制作wordpress模板分享
  • 做个网站页面多钱网站界面设计案例
  • 网站的功能和特色优化设计六年级下册语文答案
  • 国外对旅游网站建设的现状动漫设计是干嘛的
  • 南宁网站seo外包沈阳seo自然优化排名
  • 东莞微网站制作wordpress微信图片采集器
  • 600元做网站哪里有竞价推广托管
  • 专题网站设计网站建设哪家g
  • 网站开发平台开发公司信用中国官网企业查询
  • 外贸行业网站建设公司排名ui和网页设计
  • 华企网站建设推广优化中科汇联网站建设手册
  • 优化网站关键词的技巧国际新闻最新消息今天233
  • 互联网网站开发合同范本网站怎么做百度优化
  • 洛阳做网站公司网站的二维码怎么做的
  • 长安网站建设费用虎年ppt模板免费下载