当前位置: 首页 > news >正文

网络文化经营许可证费用佛山seo培训机构

网络文化经营许可证费用,佛山seo培训机构,有什么网站帮做邀请函设计的,wordpress收费下载插件Pandas是Python数据分析处理的核心第三方库,它使用二维数组形式,类似Excel表格,并封装了很多实用的函数方法,让你可以轻松地对数据集进行各种操作。 这里列举下Pandas中常用的函数和方法,方便大家查询使用。 读取 写…

Pandas是Python数据分析处理的核心第三方库,它使用二维数组形式,类似Excel表格,并封装了很多实用的函数方法,让你可以轻松地对数据集进行各种操作。

这里列举下Pandas中常用的函数和方法,方便大家查询使用。

读取 写入

  • read_csv:读取CSV文件
  • to_csv:导出CSV文件
  • read_excel:读取Excel文件
  • to_excel:导出Excel文件
  • read_json:读取Json文件
  • to_json:导出Json文件
  • read_html:读取网页中HTML表格数据
  • to_html:导出网页HTML表格
  • read_clipboard:读取剪切板数据
  • to_clipboard:导出数据到剪切板
  • to_latex:导出数据为latex格式
  • read_sas:读取sas格式数据(一种统计分析软件数据格式)
  • read_spss:读取spss格式数据(一种统计分析软件数据格式)
  • read_stata:读取stata格式数据(一种统计分析软件数据格式)
  • read_sql:读取sql查询的数据(需要连接数据库),输出dataframe格式
  • to_sql:向数据库写入dataframe格式数据

连接 合并 重塑

  • merge:根据指定键关联连接多个dataframe,类似sql中的join
  • concat:合并多个dataframe,类似sql中的union
  • pivot:按照指定的行列重塑表格
  • pivot_table:数据透视表,类似excel中的透视表
  • cut:将一组数据分割成离散的区间,适合将数值进行分类
  • qcut:和cut作用一样,不过它是将数值等间距分割
  • crosstab:创建交叉表,用于计算两个或多个因子之间的频率
  • join:通过索引合并两个dataframe
  • stack: 将数据框的列“堆叠”为一个层次化的Series
  • unstack: 将层次化的Series转换回数据框形式
  • append: 将一行或多行数据追加到数据框的末尾

分组 聚合 转换 过滤

  • groupby:按照指定的列或多个列对数据进行分组
  • agg:对每个分组应用自定义的聚合函数
  • transform:对每个分组应用转换函数,返回与原始数据形状相同的结果
  • rank:计算元素在每个分组中的排名
  • filter:根据分组的某些属性筛选数据
  • sum:计算分组的总和
  • mean:计算分组的平均值
  • median:计算分组的中位数
  • min和 max:计算分组的最小值和最大值
  • count:计算分组中非NA值的数量
  • size:计算分组的大小
  • std和 var:计算分组的标准差和方差
  • describe:生成分组的描述性统计摘要
  • first和 last:获取分组中的第一个和最后一个元素
  • nunique:计算分组中唯一值的数量
  • cumsum、cummin、cummax、cumprod:计算分组的累积和、最小值、最大值、累积乘积

数据清洗

  • dropna: 丢弃包含缺失值的行或列
  • fillna: 填充或替换缺失值
  • interpolate: 对缺失值进行插值
  • duplicated: 标记重复的行
  • drop_duplicates: 删除重复的行
  • str.strip: 去除字符串两端的空白字符
  • str.lower和 str.upper: 将字符串转换为小写或大写
  • str.replace: 替换字符串中的特定字符
  • astype: 将一列的数据类型转换为指定类型
  • sort_values: 对数据框按照指定列进行排序
  • rename: 对列或行进行重命名
  • drop: 删除指定的列或行

数据可视化

  • pandas.DataFrame.plot.area:绘制堆积图
  • pandas.DataFrame.plot.bar:绘制柱状图
  • pandas.DataFrame.plot.barh:绘制水平条形图
  • pandas.DataFrame.plot.box:绘制箱线图
  • pandas.DataFrame.plot.density:绘制核密度估计图
  • pandas.DataFrame.plot.hexbin:绘制六边形分箱图
  • pandas.DataFrame.plot.hist:绘制直方图
  • pandas.DataFrame.plot.line:绘制线型图
  • pandas.DataFrame.plot.pie:绘制饼图
  • pandas.DataFrame.plot.scatter:绘制散点图
  • pandas.plotting.andrews_curves:绘制安德鲁曲线,用于可视化多变量数据
  • pandas.plotting.autocorrelation_plot:绘制时间序列自相关图
  • pandas.plotting.bootstrap_plot:用于评估统计数据的不确定性,例如均值,中位数,中间范围等
  • pandas.plotting.lag_plot:绘制时滞图,用于检测时间序列数据中的模式、趋势和季节性
  • pandas.plotting.parallel_coordinates:绘制平行坐标图,用于展示具有多个特征的数据集中各个样本之间的关系
  • pandas.plotting.scatter_matrix:绘制散点矩阵图
  • pandas.plotting.table:绘制表格形式可视化图

日期时间

  • to_datetime: 将输入转换为Datetime类型
  • date_range: 生成日期范围
  • to_timedelta: 将输入转换为Timedelta类型
  • timedelta_range: 生成时间间隔范围
  • shift: 沿着时间轴将数据移动
  • resample: 对时间序列进行重新采样
  • asfreq: 将时间序列转换为指定的频率
  • cut: 将连续数据划分为离散的箱
  • period_range: 生成周期范围
  • infer_freq: 推断时间序列的频率
  • tz_localize: 设置时区
  • tz_convert: 转换时区
  • dt: 用于访问Datetime中的属性
  • day_name, month_name: 获取日期的星期几和月份的名称
  • total_seconds: 计算时间间隔的总秒数
  • rolling: 用于滚动窗口的操作
  • expanding: 用于展开窗口的操作
  • at_time, between_time: 在特定时间进行选择
  • truncate: 截断时间序列
http://www.yayakq.cn/news/739778/

相关文章:

  • 海口网站建设解决方案如何做一个个人做网站
  • 怎么仿照别人网站天眼查官网入口网页版
  • 大理网站制作东莞建设造价信息网站
  • 做网站不如做公众号佛山网站建设佛山
  • 腾讯云wordpress搭建网站陕西机械加工网
  • 济南市工程建设标准定额站网站公司设计一个网站需要多久
  • 社交网站 建站广东公司搜索seo哪家强
  • 中国建设银行网站个人客户遵义网上办事大厅
  • 商会网站设计摄影网站开发背景怎么写
  • vip网站怎么做手机网站底部电话
  • 可以货代从哪些网站开发客户兰州市网络设计方案
  • 企业网站源码排行php做网站步骤
  • 网站ns记录建立网站用英语怎么说
  • 做手机网站哪家好免费查企业app排行榜
  • html5移动网站制作为什么选php语言做网站
  • 做免费试用的网站wordpress页脚修改
  • 网站数据备份做阿里云网站的公司吗
  • 金华永康网站建设天下信息网
  • 早厦门构网站建设小程序开发步骤大全
  • 彩票投资理财平台网站建设济源市建设网站
  • 软件技术有学做网站吗婚纱摄影网站模板之家
  • 用别的域名给网站做竞价做装修网站公司
  • 网站开发业绩做签名的网站
  • 微信小程序自助建站网站备案通知
  • 简易网站的html代码qq邮箱企业邮箱注册
  • 网站开发维护员挣钱吗长沙那个手机建网站公司好
  • 局网站建设情况wordpress个人博客实战
  • 网站织梦后台一片白top wang域名做网站好
  • 职业病院网站建设wordpress手机端添加底部功能菜单
  • 信息图表设计网站南京网站推广费用