当前位置: 首页 > news >正文

网站建设语言什么语言百度教育会员

网站建设语言什么语言,百度教育会员,正规小程序开发的公司,html网站服务器搭建在上一篇文章中, 我们了解了图的最小生成树算法. 本节我们来学习 图的强连通分量(Strongly Connected Component, SCC) 算法. 什么是强连通分量? 在 有向图 中, 若一组节点内的任意两个节点都能通过路径互相到达(例如 A → B A \rightarrow B A→B 且 B → A B \rightarro…

在上一篇文章中, 我们了解了图的最小生成树算法. 本节我们来学习 图的强连通分量(Strongly Connected Component, SCC) 算法.

什么是强连通分量?

有向图 中, 若一组节点内的任意两个节点都能通过路径互相到达(例如 A → B A \rightarrow B AB B → A B \rightarrow A BA), 则这组节点构成一个强连通分量. 它是图中的最大独立连通单元, 可以看作一种对有向图结构的深层划分.


环境要求

本文所用样例在Windows 11以及Ubuntu 24.04上面编译通过.

  1. Windows: 使用[Visual Studio],
  2. Ubuntu: 使用 Clang 18.1.3. (Ubuntu 24.04 系统安装版本)
  3. GCC 无法编译直接本项目代码, 因为本文代码使用了 C++20 Module, 而 GCC 对此支持不完整.

关于 Module 的更多信息, 请参考我之前的博客: CMake 构建 C++20 Module 实例(使用 MSVC)

本项目工程目录: 图论代码


基础概念

在深入算法之前, 我们需要明确几个关键术语和背景知识.

有向图与强连通性

  • 强连通性(Strong Connectivity): 若图中任意两节点均能互相到达(即存在 A → B A \rightarrow B AB , B → A B \rightarrow A BA的路径), 则该图是强连通的.

    connected graph

    上图中任意两点都是强连通的.

  • 强连通分量(SCC): 有向图的子集, 其内部节点强连通, 且无法再添加任何其他节点仍保持强连通性(即"最大性").

    scc

    上图中强连通分量为 {1, 2, 3}


逆图(Transpose Graph)

将原图所有边的方向反转后得到的新图. 例如, 若原图有边 A → B A \rightarrow B AB, 逆图中则为: B → A B \rightarrow A BA. 在 Kosaraju 算法中, 逆图帮助定位 SCC 的"边界".

transpose


缩点(Condensation)与 DAG

缩点操作是将每个 SCC 合并为一个超级节点, 原图中 SCC 间的边简化为超级节点间的边. 缩点后的图无环路, 这一特性在拓扑排序中至关重要. 通过缩点, 复杂图的分析可简化为对 DAG 的操作(例如路径查找或依赖解析).
condensation


3. Kosaraju 算法详解

Kosaraju 算法是计算强连通分量(SCC)的高效算法, 时间复杂度为 O ( V + E ) O(V + E) O(V+E)(线性时间). 其核心思想通过两次深度优先搜索(DFS)实现, 结合逆图(Transpose Graph)和栈(Stack)的特性, 逐层剥离 SCC.

算法步骤

  1. 第一次 DFS: 标记节点完成顺序

    • 对原图进行深度优先搜索, 按节点完成遍历的逆序将节点压入栈(即最后完成的节点在栈顶).
    • 关键作用: 确保后续处理时, 从"最晚完成"的节点(即潜在 SCC 的"根")开始, 保证 SCC 的完整性.
  2. 构建逆图

    • 将原图所有边的方向反转, 生成逆图(Transpose Graph).
  3. 第二次 DFS: 提取 SCC

    • 按栈中节点的顺序, 依次从栈顶取出节点, 对逆图进行 DFS.
    • 每轮 DFS 访问的节点构成一个 SCC.
原理剖析
  • 为何需要逆图?
    SCC 的强连通性在逆图中保持不变, 但逆图的遍历顺序能天然隔离不同 SCC 的边界.

    • 例如, 原图中存在 A→B, 逆图中则为 B→A. 若 AB 属于同一 SCC, 逆图的 DFS 仍能覆盖两者; 若属于不同 SCC, 逆图的遍历顺序会避免跨分量污染.
  • 栈的作用
    第一次 DFS 的逆序栈隐含了原图的拓扑排序(忽略环路), 确保第二次 DFS 从"高层级"分量开始, 避免重复遍历.


伪代码实现

Kosaraju(G):// G 是一个有向图// Step 1: 对原图G执行深度优先搜索,并记录每个节点的完成时间finish_time = [] // 这里我们用一个列表存储按完成时间排序的节点visited = [false] * |V| // 初始化所有节点为未访问状态for each vertex u in G:if not visited[u]:DFS(G, u, visited, finish_time)// Step 2: 转置图G,得到G^TGT = transpose(G)// 重置访问标记数组visited = [false] * |V|// Step 3: 对转置后的图GT执行深度优先搜索,按照原图的完成时间顺序while finish_time is not empty:v = finish_time.pop() // 取出最后一个元素,即具有最大完成时间的节点if not visited[v]:// 打印或处理这个强连通分量print("SCC:")DFS(GT, v, visited) // 注意这里不需要更新finish_time// 深度优先搜索辅助函数
DFS(graph, start_vertex, visited, finish_time=None):visited[start_vertex] = truefor each neighbor in graph.adjacent(start_vertex):if not visited[neighbor]:DFS(graph, neighbor, visited, finish_time)if finish_time is not None:finish_time.append(start_vertex) // 在递归返回时记录节点

示例演示

假设原图如下(边为有向):

example

  1. 第一次 DFS: 假设遍历顺序为 A -> B -> C -> D -> E -> F, 栈中顺序为 栈底[F, E, D, C, B, A]栈顶.

    kosaraju first dfs

  2. 构建逆图: 所有边反转.
    kosaraju transpose

  3. 第二次 DFS: 依次弹出栈顶元素处理, 并 DFS 逆图:

    • A 出发, DFS 访问 A -> C -> B, 组成 SCC {A, B, C}.

http://www.yayakq.cn/news/584531/

相关文章:

  • 文学写作网站ai制作网页教程
  • wordpress aliyun-oss网站优化一般怎么做
  • 网站的根目录下是哪个文件夹wordpress 分享至微信
  • 云安区学校网站建设统计表手机网站插件代码
  • 个人免费网站怎么建设WordPress网站文章导出导入
  • 河北省城乡与住房建设厅网站企业如何建自己的网站
  • 网站建设工程属于科技档案吗网页设计实训报告摘要
  • 贵阳金阳网站建设公司路桥网站制作
  • 蓝色经典通用网站模板网站角色管理系统
  • 国内知名的网站建设企业做软件页面设计的软件
  • 济南建网站市场在线制作图片透明背景
  • 通许网站建设互联网网站开发合同范本
  • wordpress文章不显示作者贵港网站seo
  • 做兼职网站的主要参考文献分享信息的网站
  • 有的网站显示正在建设中erp软件是什么意思
  • 椒江建设网保障性阳光工程网站公司名称打分
  • 张家口网站建设哪家服务好彩票网站链接怎么做
  • wap网站asp源码域名价格查询网站
  • 做cpa必须要有网站吗it项目网站开发的需求文档
  • 衡阳建网站珠海网站建设搭建
  • 影楼网站源码php少儿编程入门教学
  • 网站服务类型有哪些3d建模做一单多少钱
  • 阿里云做网站视频教程烟台软件优化网站
  • 网站权重怎么查主播网站怎么建设
  • 网站开设作风建设专栏随申办app下载
  • 网站建设的建议例子网站建设H5 源码
  • cms网站后台上传图片提示图片类型错误但是类型是正确的没内涵网站源码
  • 找网络公司建网站每年收维护费雁塔区住房和城乡建设局网站
  • 模版网站怎么做东莞房价走势图
  • 游戏资讯网站怎么做seo实战密码第四版