当前位置: 首页 > news >正文

江苏 江苏省住房和城乡建设厅网站elementui 企业官网模板

江苏 江苏省住房和城乡建设厅网站,elementui 企业官网模板,南宁网站建设公司业绩,wordpress怎么设置底页线性不可分的情况 如果训练样本是线性不可分的,那么上一节问题的是无解的,即不存在 和 满足上面所有N个限制条件。 对于线性不可分的情况,需要适当放松限制条件,使得问题有解。 放松限制条件的基本思路: 对每个训…

线性不可分的情况

如果训练样本是线性不可分的,那么上一节问题的是无解的,即不存在 \omega 和 b 满足上面所有N个限制条件。

对于线性不可分的情况,需要适当放松限制条件,使得问题有解。

放松限制条件的基本思路:

\Rightarrow 对每个训练样本及标签 \left ( X_i,Y_i \right )

\Rightarrow 设置松弛变量(slack variable)\delta _i

对于线性不可分情况,需适当放松限制条件

限制条件改写:y_i\left ( \omega ^Tx_i+b \right )\geq 1-\delta _i,(i=1\sim N)

改造后的支持向量机优化版本

最小化:\frac{1}{2}\left \| \omega \right \|^2+C\Sigma _{i=1}^N\delta _i  或  \frac{1}{2}\left \| \omega \right \|^2+C\Sigma _{i=1}^N\delta _i^2

限制条件:

(1)\delta _i\geq 0,\left ( i=1\sim N \right )

(2)y_i\left ( \omega ^TX_i+b \right )\geq 1-\delta _i,\left ( i=1\sim N \right )

  • 以前的目标函数只需要最小化  \frac{1}{2}\left \| \omega \right \|^2 现在的目标函数增加了一项  所有 \delta _i 的和。
  • 比例因子 C\Rightarrow  平衡两项

比例因子 C 是人为设定的。

人为事先设定的参数叫做算法的超参数(Hyper Parameter)

实际中:不断变化 C 的值 \Rightarrow 同时测试算法的识别率 \Rightarrow 选取超参数 C

一个算法中,选取的超参数 C 越多,意味着算法需要手动调整优化的地方也就越多,这样算法的自动性也会降低。

支持向量机是超参数很少的算法模型。

超参数很多的算法模型,如人工神经网络、卷积神经网络等。

在线性不可分情况下应用支持向量机

取目标函数:\frac{1}{2}\left \| \omega \right \|^2+C\Sigma _{i=1}^N\delta _i,C=10000

C=10000 是为了超平面和线性可分情况保持基本一致

以下是训练数据以及解出的分类面的展示

可以看到这个分类面分开大多数的圆圈和叉,只在一个训练样本上存在分类的错误。

有了线性不可分情况下的支持向量机算法

如图,这个解分错了将近一半的样本,这个解远远不能让人满意。

问题在于我们的算法模型是线性的。也就是,我们假设分开两类的函数是直线或者超平面,我们是在一组直线和超平面中选择最合适分开这两类数据的直线或者超平面。但线性模型的表现力是不够的。

在下图这个例子中,可以看到能够分开这两类的是某种曲面,例如这个椭圆,而不是直线。

因此,我们只有想办法扩大可选函数的范围,使它超越线性,才有可能应对各种复杂的线性不可分的情况。


低维到高维的映射

支持向量机在扩大可选函数范围方面独树一帜。

其他算法,如人工神经网络、决策树等,采用的是直接产生更多可选函数的方式。

例如上图,在人工网络中,通过多层非线性函数的组合能够产生类似于椭圆这样的曲线,从而分开这幅图中的圆圈和叉。

而支持向量机却不是直接产生这样的函数,而是通过将特征空间由低维映射到高维,然后在高维的特征空间当中用线性超平面对数据进行分类。

X_1X_2 是图中的❌,X_3X_4 是图中的⭕️

这个例子是线性不可分的

如果我们构造一个二维到五维到映射 \varphi \left ( x \right ) 

\varphi \left ( x \right ): x=\begin{bmatrix} a\\ b \end{bmatrix}\rightarrow \varphi \left ( x \right )=\begin{bmatrix} a^2\\ b^2\\ a\\ b\\ ab \end{bmatrix}

按照这个映射,可以解出X_1X_2 、X_3X_4

\varphi \left ( X_1 \right )=\begin{bmatrix} 0\\ 0\\ 0\\ 0\\ 0 \end{bmatrix}     \varphi \left ( X_2 \right )=\begin{bmatrix} 1\\ 1\\ 1\\ 1\\ 1 \end{bmatrix}     \varphi \left ( X_3 \right )=\begin{bmatrix} 1\\ 0\\ 1\\ 0\\ 0 \end{bmatrix}     \varphi \left ( X_4 \right )=\begin{bmatrix} 0\\ 1\\ 0\\ 1\\ 0\end{bmatrix}

当映射变成五维时\varphi \left ( X_1 \right )\varphi \left ( X_2 \right )\varphi \left ( X_3 \right )\varphi \left ( X_4 \right )  线性可分

设:

\omega =\begin{bmatrix} -1\\ -1\\ -1\\ -1\\ 6 \end{bmatrix}

b=1

可以算出

\omega ^T\varphi \left (X_1\right )+b = 1\geqslant 0                  \omega ^T\varphi \left (X_2\right )+b = 3\geqslant 0

\omega ^T\varphi \left (X_3\right )+b =- 1< 0               \omega ^T\varphi \left (X_4\right )+b = -1< 0

由于X_1X_2 是同一类,X_3X_4 是同一类

人为二维到五维到映射 \varphi \left ( X \right )线性不可分的数据集 \Rightarrow 线性可分的数据集

假设:

在一个M维空间上随机取N个训练样本,随机的对每个训练样本赋予标签 +1 或 -1

假设:

这些训练样本线性可分的概率为 P\left ( M \right )

当 M 趋于无穷大时,P\left ( M \right )=1

即,当我们增加特征空间的维度 M 的时候,超平面待估计的参数 \left ( \omega ,b \right ) 的维度也会增加。也就是整个算法模型的自由度会增加。

这个定理告诉我们,将训练样本由低维映射到高维 \Rightarrow 增大线性可分的概率。

http://www.yayakq.cn/news/127803/

相关文章:

  • 淘宝网站设计分析网站建设费用初步预算
  • 佛山本地的网站设计公司榆林网站建设公司电话
  • 南京网站设公司lol视频网站源码
  • 外贸网站用什么语言wordpress的好
  • 昆山普立斯特做的有网站温州做网站定制
  • 济南哪家公司做网站如何制作网站网页
  • 整站优化代理重庆网站查询
  • 给网站如何做飘窗商城网站怎么自己搭建
  • 网站开发项目任务西安做网站设计的公司
  • 廊坊市做网站网页做网站的尺寸
  • 工作室网站建设网站 文件夹 上传
  • 怎样可以查看网站是由哪个公司做的如何把page转换为wordpress
  • 成都市住房与城乡建设厅网站柏乡seo快排优化
  • 信息化建设好的企业网站有哪些建站公司技术服务费
  • 个人网站如何建全国招商加盟项目
  • 做淘宝客网站需要多大带宽谷歌seo优化是什么
  • 网站虚拟主机1gwordpress网站下载文件
  • 东莞公司网站做优化网站怎么做外链
  • 利用html5 监控网站性能网站常见的风格
  • 网站建站实训总结做网站的软件 知乎
  • 微信h5商城网站余音网wordpress主题
  • 宝安商城网站建设哪家便宜免费发布推广的平台有哪些
  • 珠海网站开发价格wordpress修改手机模板
  • 进口彩妆做的好的网站wordpress前台增加编辑
  • 轻松做网站oa管理系统模板
  • 网站的后台怎么做调查问卷这几年做哪个网站致富
  • 杭州seo相关网站免费短视频制作
  • 匀贵网站建设建立网站要钱吗?
  • 如何做网站栏目规划北京宏福建设有限公司网站
  • 免费做网站送域名的网站建设基础问题