当前位置: 首页 > news >正文

杭州做网站优化公众号网站开发用什么模板

杭州做网站优化,公众号网站开发用什么模板,qq云wordpress,科技感的网站前言 如果你对这篇文章可感兴趣,可以点击「【访客必读 - 指引页】一文囊括主页内所有高质量博客」,查看完整博客分类与对应链接。 变分推断 在贝叶斯方法中,针对含有隐变量的学习和推理,通常有两类方式,其一是马尔可…

前言

如果你对这篇文章可感兴趣,可以点击「【访客必读 - 指引页】一文囊括主页内所有高质量博客」,查看完整博客分类与对应链接。


变分推断

在贝叶斯方法中,针对含有隐变量的学习和推理,通常有两类方式,其一是马尔可夫链蒙特卡罗法 (MCMC),其通过采样来近似估计后验概率分布;其二是变分推断,通过解析的方法近似计算后验概率分布。

假设联合概率分布 p(x,z)p(x,z)p(x,z),其中 xxx 是观测变量,即数据,zzz 是隐变量,目标是学习后验概率分布 p(z∣x)p(z\mid x)p(zx)

由于 p(z∣x)p(z\mid x)p(zx) 通常非常复杂,难以直接求解,因此变分推断使用分布 q(z)q(z)q(z) 来近似 p(z∣x)p(z\mid x)p(zx),并通过限制 q(z)q(z)q(z) 形式,得到一种局部最优、但具有确定解的近似后验分布。其中 q(z)q(z)q(z) 即为变分分布 (variational distribution),q(z)q(z)q(z)p(z∣x)p(z\mid x)p(zx) 之间的相似度通过 KL\text{KL}KL 散度衡量。

如下图所示,我们希望在集合 Q\mathcal{Q}Q 中找到 q∗(z)q^*(z)q(z) 使其与 p(z∣x)p(z\mid x)p(zx) 之间的 KL\text{KL}KL 散度尽可能小。

在这里插入图片描述
基于上述想法,对 KL(q(z)∥p(z∣x))\text{KL}(q(z)\|p(z\mid x))KL(q(z)p(zx)) 进行拆解:
KL(q(z)∥p(z∣x))=∫q(z)log⁡q(z)dz−∫q(z)log⁡p(z∣x)dz=log⁡p(x)−{∫q(z)log⁡p(x,z)dz−∫q(z)log⁡q(z)dz}=log⁡p(x)−Eq[log⁡p(x,z)−log⁡q(z)].\begin{aligned} \text{KL}(q(z)\| p(z\mid x)) &= \int q(z) \log q(z) \text{d} z - \int q(z) \log p(z\mid x) \text{d} z \\ &= \log p(x) - \left\{\int q(z) \log p(x,z) \text{d} z - \int q(z) \log q(z) \text{d} z\right\} \\ &= \log p(x) - \mathbb{E}_q\left[\log p(x,z)-\log q(z)\right]. \end{aligned} KL(q(z)p(zx))=q(z)logq(z)dzq(z)logp(zx)dz=logp(x){q(z)logp(x,z)dzq(z)logq(z)dz}=logp(x)Eq[logp(x,z)logq(z)].

由于 KL\text{KL}KL 散度非负,因此:
log⁡p(x)≥Eq[log⁡p(x,z)−log⁡q(z)].\log p(x) \geq \mathbb{E}_q\left[\log p(x,z)-\log q(z)\right]. logp(x)Eq[logp(x,z)logq(z)].

不等式左端为证据 (Evidence),右端则为证据下界 (Evidence Lower Bound, ELBO\text{ELBO}ELBO),记作 L(q)L(q)L(q)(ELBO 经常出现于各类与贝叶斯有关的文章中)。

我们的目的是求解 q(z)q(z)q(z) 来最小化 KL(q(z)∥p(z∣x))\text{KL}(q(z)\| p(z\mid x))KL(q(z)p(zx)),由于 log⁡p(x)\log p(x)logp(x) 是常量,问题转化为最大化 ELBO\text{ELBO}ELBO L(q)L(q)L(q).

q(z)q(z)q(z) 形式过于复杂,最大化 ELBO\text{ELBO}ELBO 依然难以求解,因此通常会对 q(z)q(z)q(z) 形式进行约束,一种常见的方式是假设 zzz 服从分布
q(z)=∏iqi(zi),q(z)=\prod_{i} q_i(z_i), q(z)=iqi(zi),

zzz 可拆解为一系列相互独立的 ziz_izi,此时的变分分布称为平均场 (Mean Filed).

总结一下,变分推断常见步骤如下:

  • 定义变分分布 q(z)q(z)q(z)
  • 推导证据下界 ELBO\text{ELBO}ELBO 表达式;
  • 最大化 ELBO\text{ELBO}ELBO,得到 q∗(z)q^*(z)q(z),作为后验概率分布 p(z∣x)p(z\mid x)p(zx) 的近似。

广义 EM

上述变分推断过程可以与「广义 EM」联系起来,由于 log⁡p(x)≥ELBO\log p(x)\geq \text{ELBO}logp(x)ELBO 恒成立,若将模型参数 θ\thetaθ 引入其中,即可得到:

log⁡p(x∣θ)≥Eq[log⁡p(x,z∣θ)−log⁡q(z)],\log p(x\mid \theta) \geq \mathbb{E}_q\left[\log p(x,z\mid \theta)-\log q(z)\right], logp(xθ)Eq[logp(x,zθ)logq(z)],

此时有两种理解:

  • 用分布 q(z)q(z)q(z) 近似联合概率分布 p(x,z∣θ)p(x,z\mid \theta)p(x,zθ),最小化分布距离 KL(q∥p)\text{KL}(q\|p)KL(qp)
  • 采用极大似然估计的思想,最大化对数似然函数 log⁡p(x∣θ)\log p(x\mid \theta)logp(xθ)(也可以理解为最大化证据)。

虽然两种视角不同,但结论一致,即最大化 ELBO\text{ELBO}ELBO,记作 L(q,θ)L(q,\theta)L(q,θ)。对应于广义 EM 算法,即采用迭代的方式,循环执行 E 步和 M 步,直至收敛:

  • 【E 步】固定 θ\thetaθ,求 L(q,θ)L(q,\theta)L(q,θ)qqq 的最大化;
  • 【M 步】固定 qqq,求 L(q,θ)L(q,\theta)L(q,θ)θ\thetaθ 的最大化。

上述迭代可以保证 log⁡p(x∣θ(t))\log p(x\mid \theta^{(t)})logp(xθ(t)) 不降,即一定会收敛,但可能会收敛到局部最优:
log⁡p(x∣θ(t−1))=L(q(t),θ(t−1))≤L(q(t),θ(t))≤log⁡p(x∣θ(t))\log p(x \mid \theta^{(t-1)})=L(q^{(t)}, \theta^{(t-1)}) \leq L(q^{(t)}, \theta^{(t)}) \leq \log p(x \mid \theta^{(t)}) logp(xθ(t1))=L(q(t),θ(t1))L(q(t),θ(t))logp(xθ(t))

其中「左边第一个等号」由变分推断原理 + E 步得到,「左边第一个不等号」由 M 步得到,「左边第二个不等号」由变分推断原理得到。


参考资料

  • 周志华. (2016). 机器学习. 清华大学出版社, 北京.
  • 李航. (2019). 统计学习方法. 清华大学出版社, 第 2 版, 北京.
http://www.yayakq.cn/news/81068/

相关文章:

  • 厦门网站seo优化网站关键词怎么改
  • 最火的做牛排沙拉网站wordpress手机底部导航栏设置
  • 某网站网站的设计与实现百度推广登录网址
  • 镇江网站建设优化排名广州网站站建设培训
  • 网站建设百度知道做网站编辑
  • 检测网站开发语言wordpress怎样发邮件
  • 宁波网站seo报价黄骅市做网站价格
  • 关于网站建设的基础知识花生壳动态域名做网站
  • 南昌微信网站开发公司电商平台设计方案
  • 如何更换网站空间免费crm在线看系统
  • 手机网站全屏代码公司建立网站的意义
  • 网站管理系统图片wamp 网站开发首先做什么
  • 网站社区建设各类网站排名
  • 重庆网站制作哪家好用asp做网站需要什么软件
  • 哈尔滨做网站优化网页设计培训
  • 裕顺网站建设网络营销的现状和发展趋势
  • 做58同城网站花了多少钱域名是什么结构称为域名空间
  • 广州网站建设推广专家wordpress环境系统
  • 正规的网站建设学习网wordpress adsence
  • 成都网站制作成都网站制作四级a做爰片免费网站
  • 数据库电影网站源码上海公司注册代理公司
  • 大望路网站制作wordpress 计算程序
  • 大名网站建设费用做企业网站 目的
  • 哪些网站使用wordpress建设银行交学费网站2018
  • 网站建立于网页设计wordpress 视频压缩
  • 教育类网站 前置审批html5音乐网站模板
  • 郑州网站建设及托管网站建设论文500字
  • 学校响应式网站建设一个网站同时做竞价和seo
  • 网站设计目的莱芜网络公司平台
  • 如何建设网页游戏网站猪八戒网站做推广怎么样