当前位置: 首页 > news >正文

企业官方网站地址怎么填ip138域名网址查询

企业官方网站地址怎么填,ip138域名网址查询,企业管理系统项目简介内容,wordpress客户端插件1. 简介 pydantic 库是一种常用的用于数据接口 schema 定义与检查的库。 通过 pydantic 库,我们可以更为规范地定义和使用数据接口,这对于大型项目的开发将会更为友好。 当然,除了 pydantic 库之外,像是 valideer 库、marshmallo…

1. 简介

pydantic 库是一种常用的用于数据接口 schema 定义与检查的库。
通过 pydantic 库,我们可以更为规范地定义和使用数据接口,这对于大型项目的开发将会更为友好。
当然,除了 pydantic 库之外,像是 valideer 库、marshmallow 库、trafaret 库以及 cerberus 库等都可以完成相似的功能,但是相较之下,pydantic 库的执行效率会更加优秀一些。
因此,这里,我们仅针对 pydantic 库来介绍一下如何规范定义标准 schema 并使用。

安装部署

pip install pydantic

2. 使用方法

2.1. schema 基本定义

pydantic 库的数据定义方式是通过 BaseMode l类来进行定义的,所有基于pydantic的数据类型本质上都是一个BaseModel类,它最基本的使用方式如下:

from pydantic import BaseModelclass Person(BaseModel):name: str

2.2. schema 基本实例化

调用时,我们只需要对其进行实例化即可,实例化方法有以下几种:
直接传值

p = Person(name="Tom")
print(p.json()) # {"name": "Tom"}

通过字典传入

p = {"name": "Tom"}
p = Person(**p)
print(p.json()) # {"name": "Tom"}

通过其他的实例化对象传入

p2 = Person.copy(p)
print(p2.json()) # {"name": "Tom"}

2.3. 异常处理

当传入值错误的时候,pydantic就会抛出报错,例如:

Person(person="Tom")  # 定义为name,而非person

pydantic会抛出异常:

ValidationError: 1 validation errors for Person
namefield required (type=value_error.missing)

2.4. 参数过滤

另一方面,如果传入值多于定义值时,BaseModel 也会自动对其进行过滤。如:

p = Person(name="Tom", gender="man", age=24)
print(p.json()) # {"name": "Tom"}

可以看到,额外的参数 gender 与 age 都被自动过滤了。
通过这种方式,数据的传递将会更为安全,但是,同样的,这也要求我们在前期的 schema 定义中必须要尽可能地定义完全。

2.5. 阴性类型转换

此外,pydantic 在数据传输时会直接进行数据类型转换,因此,如果数据传输格式错误,但是可以通过转换变换为正确的数据类型是,数据传输也可以成功,例如:

p = Person(name=123)
print(p.json()) # {"name": "123"}

3. pydantic 数据类型

3.1. 基本数据类型

下面,我们来看一下pydantic中的一些常用的基本类型。

from pydantic import BaseModel
from typing import Dict, List, Sequence, Set, Tupleclass Demo(BaseModel):a: int # 整型b: float # 浮点型c: str # 字符串d: bool # 布尔型e: List[int] # 整型列表f: Dict[str, int] # 字典型,key为str,value为intg: Set[int] # 集合h: Tuple[str, int] # 元组

3.2. 高级数据结构

这里,我们给出一些较为复杂的数据类型的实现。

3.2.1. enum 数据类型

enum型数据类型我们可以通过enum库进行实现,给出一个例子如下:

from enum import Enumclass Gender(str, Enum):man = "man"women = "women"

3.2.2. 可选数据类型

如果一个数据类型不是必须的,可以允许用户在使用中不进行传入,则我们可以使用typing库中的Optional方法进行实现。

from typing import Optional
from pydantic import BaseModelclass Person(BaseModel):name: strage: Optional[int]

需要注意的是,设置为可选之后,数据中仍然会有age字段,但是其默认值为None,即当不传入age字段时,Person仍然可以取到age,只是其值为None。例如:

p = Person(name="Tom")
print(p.json()) # {"name": "Tom", "age": None}

3.2.3. 数据默认值

上述可选数据类型方法事实上是一种较为特殊的给予数据默认值的方法,只是给其的默认值为None。这里,我们给出一些更加一般性的给出数据默认值的方法。

from pydantic import BaseModelclass Person(BaseModel):name: strgender: str = "man"p = Person(name="Tom")
print(p.json()) # {"name": "Tom", "gender": "man"}

3.2.4. 允许多种数据类型

如果一个数据可以允许多种数据类型,我们可以通过 typing 库中的 Union 方法进行实现。

from typing import Union
from pydantic import BaseModelclass Time(BaseModel):time: Union[int, str]t = Time(time=12345)
print(t.json()) # {"time": 12345}
t = Time(time = "2020-7-29")
print(t.json()) # {"time": "2020-7-29"}

3.2.5. 异名数据传递

假设我们之前已经定义了一个schema,将其中某一个参量命名为了A,但是在后续的定义中,我们希望这个量被命名为B,要如何完成这两个不同名称参量的相互传递呢?
我们可以通过 Field 方法来实现这一操作。

from pydantic import BaseModel, Fieldclass Password(BaseModel):password: str = Field(alias = "key")

则在传入时,我们需要用key关键词来传入password变量。

p = Password(key="123456")
print(p.json()) # {"password": "123456"}

3.2.6. 多级 schema 定义

这里,我们给出一个较为复杂的基于pydantic的schema定义实现样例。

from enum import Enum
from typing import List, Union
from datetime import date
from pydantic import BaseModelclass Gender(str, Enum):man = "man"women = "women"class Person(BaseModel):name : strgender : Genderclass Department(BaseModel):name : strlead : Personcast : List[Person]class Group(BaseModel):owner: Personmember_list: List[Person] = []class Company(BaseModel):name: strowner: Union[Person, Group]regtime: datedepartment_list: List[Department] = []

需要注意的是,我们除了可以一步一步地实例化之外,如果我们已经有了一个完整的Company的内容字典,我们也可以一步到位地进行实例化。

sales_department = {"name": "sales","lead": {"name": "Sarah", "gender": "women"},"cast": [{"name": "Sarah", "gender": "women"},{"name": "Bob", "gender": "man"},{"name": "Mary", "gender": "women"}]
}research_department = {"name": "research","lead": {"name": "Allen", "gender": "man"},"cast": [{"name": "Jane", "gender": "women"},{"name": "Tim", "gender": "man"}]
}company = {"name": "Fantasy","owner": {"name": "Victor", "gender": "man"},"regtime": "2020-7-23","department_list": [sales_department,research_department]
}company = Company(**company)

3.3. 数据检查

pydantic 本身提供了上述基本类型的数据检查方法,但是,除此之外,我们也可以使用 validator 和 config 方法来实现更为复杂的数据类型定义以及检查。

3.3.1. validator用法

使用validator方法,我们可以对数据进行更为复杂的数据检查。

import re
from pydantic import BaseModel, validatorclass Password(BaseModel):password: str@validator("password")def password_rule(cls, password):def is_valid(password):if len(password) < 6 or len(password) > 20:return Falseif not re.search("[a-z]", password):return Falseif not re.search("[A-Z]", password):return Falseif not re.search("\d", password):return Falsereturn Trueif not is_valid(password):raise ValueError("password is invalid")

通过这种方式,我们就可以额外对密码类进行格式要求,对其字符数以及内部字符进行要求。

3.3.2. Config 方法

如果要对BaseModel中的某一基本型进行统一的格式要求,我们还可以使用Config方法来实现。

from pydantic import BaseModelclass Password(BaseModel):password: strclass Config:min_anystr_length = 6 # 令Password类中所有的字符串长度均要不少于6max_anystr_length = 20 # 令Password类中所有的字符串长度均要不大于20

4. 模型属性

dict() 模型字段和值的字典
json() JSON 字符串表示dict()
copy() 模型的副本(默认为浅表副本)
parse_obj() 使用dict解析数据
parse_raw 将str或bytes并将其解析为json,然后将结果传递给parse_obj
parse_file 文件路径,读取文件并将内容传递给parse_raw。如果content_type省略,则从文件的扩展名推断
from_orm() 从ORM 对象创建模型
schema() 返回模式的字典
schema_json() 返回该字典的 JSON 字符串表示
construct() 允许在没有验证的情况下创建模型
fields_set 初始化模型实例时设置的字段名称集
fields 模型字段的字典
config 模型的配置类

参考:
https://blog.csdn.net/codename_cys/article/details/107675748
https://www.cnblogs.com/dyl0/articles/16896330.html

http://www.yayakq.cn/news/797432/

相关文章:

  • Wordpress 手机网站网站网页模板
  • 大型旅游网站南通网站外包
  • 佛山企业网站开发用凡科做网站好弄吗
  • 怎么在百度网站上做自己的网站网站添加可信任站点怎么做
  • 安徽合肥制作网站公司哪家好郑州网站建设rwxwl
  • 58招聘运营网站怎么做如何做微信下单小程序
  • 论坛程序做导航网站北京移动网站建设公司价格
  • ftp怎么连接网站空间saas网站开发
  • 公司网站建设有哪些做wordpress
  • 钦州网站建网站建设教程pdf下载
  • php网站开发实例教程的作者百度公司在哪
  • 如何用工控做网站新媒体营销案例
  • ...温岭做网站安徽省建设工程信息管理平台
  • 如何提高网站内容质量推广引流渠道有哪些
  • 建设厅网站实名制系统如何解聘购买保险的网站
  • 做一个网站需要多少钱大概个人可以自己做网站吗
  • 视觉冲击力的网站设计wordpress文章列表不同样式
  • 大气网站模板wordpress先生
  • 谁分享一个免费网站2021博客seo教程
  • onethink做移动网站动漫网站怎么做的
  • 专题网站设计山西网站建设设计
  • 南京市浦口区城乡建设局网站湖北省住房与城乡建设部网站
  • php网站是什么武当王也拜见老天师
  • 爱用建站平台微信网站域名备案成功后怎么做
  • 西安千度网站建设深圳品牌产品设计公司
  • 十堰微网站建设价格wordpress左上角logo
  • 邯郸做网站价格wordpress如何去除底部
  • 手机网站免费wordpress缓存优化
  • 自己做的网站点击赚钱网站的推广有哪些方式
  • 中国智慧城市建设门户网站wordpress h5 视频