当前位置: 首页 > news >正文

做网站手机端需要pc端的源代码吗陕西网站建设网络公司

做网站手机端需要pc端的源代码吗,陕西网站建设网络公司,windows更新wordpress,ui设计案例作品3.5 基,维数与坐标 \quad 本节,继续研究线性空间的结构。一般地,设 V V V 是数域 K K K 上的一个线性空间。 \quad 首先,我们先将“线性相关”与“线性无关”的概念由“有限”向“无限”推广。 对比其它高等代数教程&#xff0c…

3.5 基,维数与坐标

\quad 本节,继续研究线性空间的结构。一般地,设 V V V 是数域 K K K 上的一个线性空间。

\quad 首先,我们先将“线性相关”与“线性无关”的概念由“有限”向“无限”推广。

对比其它高等代数教程,邱老师在这一节非常巧妙的将“有限维”与“无限维”统一在了一起!

定义 1. 线性空间子集的线性相关与线性无关
(1) V V V 的一个有限子集 { α 1 , α 2 , ⋯ , α s } \{\boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2},\cdots,\boldsymbol{\alpha}_{s}\} {α1,α2,,αs} 线性相关 : ⟺ :\Longleftrightarrow :⟺ 向量组 α 1 , α 2 , ⋯ , α s \boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2},\cdots,\boldsymbol{\alpha}_{s} α1,α2,,αs 线性相关;
(2) V V V 的一个有限子集 { α 1 , α 2 , ⋯ , α s } \{\boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2},\cdots,\boldsymbol{\alpha}_{s}\} {α1,α2,,αs} 线性无关 : ⟺ :\Longleftrightarrow :⟺ 向量组 α 1 , α 2 , ⋯ , α s \boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2},\cdots,\boldsymbol{\alpha}_{s} α1,α2,,αs 线性无关;
(3) V V V 的一个无限子集 S S S 线性相关 : ⟺ :\Longleftrightarrow :⟺ 存在 S S S 的一个有限子集线性相关;
(4) V V V 的一个无限子集 S S S 线性无关 : ⟺ :\Longleftrightarrow :⟺ S S S 的任一个有限子集都线性无关。

例 1:平面 π \pi π 上的任意两个不共面的向量可成为该平面的一个基。

定义 2. 极大线性无关集与基:设 V V V 是数域 K K K 上的一个线性空间。 V V V 的一个子集 S S S 如果满足:
(1) S S S 是线性无关的;
(2)对于 ∀ β ∈ V \ S \forall ~ \boldsymbol{\beta} \in V \backslash S  βV\S(如果还有的话),有 S ∪ { β } S \cup \{\boldsymbol{\beta}\} S{β} 线性相关,
则称 S S S V V V 的一个 极大线性无关集

\quad 可以看到,“极大线性无关集”的概念以及与“基”相近了,不过我们需要排除一些意外情况,比如 V = { 0 } V =\{\boldsymbol{0}\} V={0}.

\quad 由 前一节 的讨论,我们知道 { 0 } \{\boldsymbol{0}\} {0} 是线性相关的,因此,若 V ≠ { 0 } V \ne \{\boldsymbol{0}\} V={0},则称 V V V 的一个极大线性无关集为 V V V 的一个

\quad 如果将上述定义推广到 V = { 0 } V =\{\boldsymbol{0}\} V={0} 的情形,则需要做一些规定:空集 ϕ \phi ϕ 是线性无关的。之后再进行分析:若 V = { 0 } V =\{\boldsymbol{0}\} V={0},由于
(1) ϕ \phi ϕ 是线性无关的;
(2)对于 0 ∈ V \ ϕ \boldsymbol{0} \in V \backslash \phi 0V\ϕ,有 ϕ ∪ { 0 } = { 0 } \phi \cup \{\boldsymbol{0}\} = \{\boldsymbol{0}\} ϕ{0}={0} 线性相关,
定义 2 ϕ \phi ϕ { 0 } \{\boldsymbol{0}\} {0} 的一个极大线性无关集,此时,我们称 ϕ \phi ϕ V V V 的一个基。

  • 简单来讲,若规定“空集是线性无关的”,则线性空间的一个极大线性无关集,就是其的一个基。
  • 定义 2 是合理的,但我们一般不会采用这个定义,因为这个定义比较抽象,不太直观。

定义 3. 基:设 V V V 是数域 K K K 上的一个线性空间。 V V V 的一个子集 S S S 若满足:
(1) S S S 是线性无关的;
(2) V V V 中的任一向量可由 S S S 中的有限多个向量线性表出,
则称 S S S V V V 的一个

\quad 另外,
(1)若 S = { α 1 , α 2 , ⋯ , α r } S = \{\boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2},\cdots,\boldsymbol{\alpha}_{r}\} S={α1,α2,,αr}(即 S S S 为有限集),也称向量组 α 1 , α 2 , ⋯ , α r \boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2},\cdots,\boldsymbol{\alpha}_{r} α1,α2,,αr V V V 的一个(有序)基
(2)规定: ϕ \phi ϕ 是线性无关的;
(3)规定:线性空间 { 0 } \{\boldsymbol{0}\} {0} 的一个基是 ϕ \phi ϕ

\quad 相较于定义 2,在定义 3 的基础上,只能规定"线性空间 { 0 } \{\boldsymbol{0}\} {0} 的一个基是 ϕ \phi ϕ",而由定义 2 是可以直接推出的。

\quad 现在思考一个问题:是否任一个线性空间都有基?答案是肯定的,详情请参见 高等代数——大学创新教材(下册) P 158 ∼ P 159 P_{158}\sim P_{159} P158P159

定义 4. 有限维与无限维
(1)若 V V V 有一个基是 V V V 的有限子集,则称 V V V有限维的
(2)若 V V V 有一个基是 V V V 的无限子集,则称 V V V无限维的

定理 1:若 V V V 是有限维的,则 V V V 的任意两个基所含个数相等。

证明:

\quad 一般地,设向量组 { α 1 , α 2 , ⋯ , α n } \{\boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2},\cdots,\boldsymbol{\alpha}_{n}\} {α1,α2,,αn} V V V 的一个基,任取 V V V 的另一个基 S S S

(1)若 S S S 所含的向量个数 > n >n >n,则在 S S S 中至少可取 n + 1 n+1 n+1 个向量 β 1 , β 2 , ⋯ , β n + 1 \boldsymbol{\beta}_{1},\boldsymbol{\beta}_{2},\cdots,\boldsymbol{\beta}_{n+1} β1,β2,,βn+1。显然,向量组 { β 1 , β 2 , ⋯ , β n + 1 } \{\boldsymbol{\beta}_{1},\boldsymbol{\beta}_{2},\cdots,\boldsymbol{\beta}_{n+1}\} {β1,β2,,βn+1} 可由向量组 { α 1 , α 2 , ⋯ , α s } \{\boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2},\cdots,\boldsymbol{\alpha}_{s}\} {α1,α2,,αs} 线性表出,由于 n + 1 > n n+1>n n+1>n,因此 β 1 , β 2 , ⋯ , β n + 1 \boldsymbol{\beta}_{1},\boldsymbol{\beta}_{2},\cdots,\boldsymbol{\beta}_{n+1} β1,β2,,βn+1 线性相关,从而产生矛盾。

(2)设 S S S 中所含向量的个数 ≤ n \le n n,不妨设为 m m m。显然有

{ α 1 , α 2 , ⋯ , α n } ≅ { β 1 , β 2 , ⋯ , β m } , \{\boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2},\cdots,\boldsymbol{\alpha}_{n}\} \cong \{\boldsymbol{\beta}_{1},\boldsymbol{\beta}_{2},\cdots,\boldsymbol{\beta}_{m}\}, {α1,α2,,αn}{β1,β2,,βm},

等价的线性无关的向量组所含向量的个数相等,因此 m = n m=n m=n.

#

推论:若 V V V 是无限维的,则 V V V 的任意一个基都是无限维的。

定义 5. 维数
(1)若 V V V 是有限维的,则称 V V V 的一个基所含向量的个数为 V V V维数。记作: dim ⁡ V \dim V dimV
(2)若 V V V 是无限维的,则将 V V V 的维数记作 dim ⁡ V = ∞ \dim V = \infty dimV=
(3)若 V = { 0 } V = \{\boldsymbol{0}\} V={0},则 dim ⁡ V = 0 \dim V = 0 dimV=0

命题 1:设 V V V n n n 维的,则 V V V 中任意 n + 1 n+1 n+1 个向量都线性相关。

命题 2:设 dim ⁡ V = n \dim V = n dimV=n S = { α 1 , α 2 , ⋯ , α n } S = \{\boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2},\cdots,\boldsymbol{\alpha}_{n}\} S={α1,α2,,αn} V V V 的一个基,则 V V V 中任一向量 α = a 1 α 1 + ⋯ + a n α n \boldsymbol{\alpha} = a_{1} \boldsymbol{\alpha}_{1}+\cdots + a_{n} \boldsymbol{\alpha}_{n} α=a1α1++anαn 的表出方式唯一。

定义 6. 坐标:设 dim ⁡ V = n \dim V = n dimV=n { α 1 , α 2 , ⋯ , α n } \{\boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2},\cdots,\boldsymbol{\alpha}_{n}\} {α1,α2,,αn} V V V 的一个基,向量 α = a 1 α 1 + ⋯ + a n α n ∈ V \boldsymbol{\alpha} = a_{1} \boldsymbol{\alpha}_{1}+\cdots + a_{n} \boldsymbol{\alpha}_{n} \in V α=a1α1++anαnV,则称 α \boldsymbol{\alpha} α坐标 为:
( a 1 a 2 ⋮ a n ) \left( \begin{array}{c} \boldsymbol{a}_1\\ \boldsymbol{a}_2\\ \vdots\\ \boldsymbol{a}_n\\ \end{array} \right) a1a2an

命题 3:设 dim ⁡ V = n \dim V = n dimV=n,则 V V V 中任意 n n n 个线性无关的向量都是 V V V 的一个基。

命题 4:设 dim ⁡ V = n \dim V = n dimV=n,若 V V V 中任一向量可由向量组 α 1 , α 2 , ⋯ , α n \boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2},\cdots,\boldsymbol{\alpha}_{n} α1,α2,,αn 线性表出,则集合 { α 1 , α 2 , ⋯ , α n } \{\boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2},\cdots,\boldsymbol{\alpha}_{n}\} {α1,α2,,αn} V V V 的一个基。

命题 5:设 dim ⁡ V = n \dim V = n dimV=n,则 V V V 的任意一个线性无关的向量组都能扩充成 V V V 的一个基。

命题 6:设 dim ⁡ V = n \dim V = n dimV=n W W W V V V 的一个子空间,则 dim ⁡ W ≤ dim ⁡ V \dim W \le \dim V dimWdimV

命题 7:向量组 α 1 , α 2 , ⋯ , α n \boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2},\cdots,\boldsymbol{\alpha}_{n} α1,α2,,αn 的一个极大线性无关组是 < α 1 , α 2 , ⋯ , α n > <\boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2},\cdots,\boldsymbol{\alpha}_{n}> <α1,α2,,αn> 的一个基。

命题 8:关于向量组的生成子空间,我们有:
( < α 1 , α 2 , ⋯ , α s > = < β 1 , β 2 , ⋯ , β t > ) ⟺ ( { α 1 , α 2 , ⋯ , α s } ≅ { β 1 , β 2 , ⋯ , β t } ) \left( <\boldsymbol{\alpha }_1,\boldsymbol{\alpha }_2,\cdots ,\boldsymbol{\alpha }_s>=<\boldsymbol{\beta }_1,\boldsymbol{\beta }_2,\cdots ,\boldsymbol{\beta }_t> \right) \,\,\Longleftrightarrow \left( \left\{ \boldsymbol{\alpha }_1,\boldsymbol{\alpha }_2,\cdots ,\boldsymbol{\alpha }_s \right\} \cong \left\{ \boldsymbol{\beta }_1,\boldsymbol{\beta }_2,\cdots ,\boldsymbol{\beta }_t \right\} \right) (<α1,α2,,αs>=<β1,β2,,βt>)({α1,α2,,αs}{β1,β2,,βt})

http://www.yayakq.cn/news/347313/

相关文章:

  • 住建培训网站哪里可以免费发广告
  • 旅游电子商务网站建设的流程wordpress注册模板下载
  • 巴中手机网站建设优化网站关键词
  • 网站程序上传站长收录
  • 长沙销售公司 网站二级医院网站建设的方案
  • 湖北高企达建设有限公司网站深圳建设银行宝安支行网站
  • 学校门户网站是什么意思网站建设高端培训
  • 网站建设各个模块的功能网站业务费如何做记账凭证
  • 网站文章更新怎么做做收钱的网站要什么条件
  • 如何使用上线了app建设网站抓取网站访客qq号码
  • 起零网站建设深圳品牌网站制作公司
  • 手机营销网站模板免费下载内蒙古有做购物网站的吗
  • 中企动力网站开发做中介网站需要多少钱
  • 网站开发 瀑布结构环保网页设计制作流程
  • 网站原则佛山专业网站建设公司推荐
  • 福建省龙岩市建设培训中心网站设置WordPress注册
  • 厦门建网站做优化零基础电商怎么做
  • 可以做外包的网站怎么个人网站设计
  • php网站开发入门到精通教程百色做网站
  • 织梦 网站无法显示该页面大型网站开发合同
  • 友链网站企业网站策划案
  • phpcms中英文网站模板网站开发到上线的流程
  • 西安网站建设itcandy全球虚拟主机论坛
  • wordpress安装指令seo做的比较好的网站的几个特征
  • 创业做网站失败直播视频素材
  • 自己做的网站怎么爬数据网站建设es158
  • 腾云网建设网站网站建站前seo注意
  • 百度网站联系方式陕西百威建设监理有限司网站
  • 合肥网站建设设计公司ps怎么做网站特效
  • 网站建设 局部放大镜功能婚纱网站免费源码