当前位置: 首页 > news >正文

做百度推广送网站吗如何用爬虫做网站监控

做百度推广送网站吗,如何用爬虫做网站监控,青岛公司logo设计,农药放行单在哪个网站做弗洛伊德算法相比迪杰斯特拉相似的地方都是遍历邻接矩阵不断调整最短路径的信息,并且两种算法面对多源最短路径的时间复杂度都是O(n^3),Floyd采用的是动态规划而Dijkstra是采用贪心的思想。在Floyd中我们将创建两个数组进行辅助,一个path二维…

        弗洛伊德算法相比迪杰斯特拉相似的地方都是遍历邻接矩阵不断调整最短路径的信息,并且两种算法面对多源最短路径的时间复杂度都是O(n^3),Floyd采用的是动态规划而Dijkstra是采用贪心的思想。在Floyd中我们将创建两个数组进行辅助,一个path二维数组用于存储路径信息,一个table二维数组用于记录更新各结点间的最短路径长度,table的初始化就是简单的把邻接矩阵的信息复制过来,整个算法都是在这个table表中不断更新,代码中第一层for循环是控制中转结点,另外两行就是遍历整个table二位数组,table[v][k]表示辅助列,table[k][w]表示辅助行,辅助行与辅助列由中转结点控制在整个table表的主对角线上运动,table[v][w]当前扫描的邻接结点信息,如果当前邻接结点的权值大于对应的(辅助行+辅助列的权值和),那么说明找到更短的路径需要进行更新权值,当前邻接结点信息改为(辅助行+辅助列的权值和),同时更新路径信息为中转结点(即前驱顶点),代码中path[v][k]存储了对应的中转结点信息,利用它更新当前邻接结点的前驱结点(对应的中转结点)信息,当循环结束整个图各顶点到达其他所有顶点的最短距离就计算完成了,最后我们打印table矩阵的上三角部分因为两个结点的表示可以用一个方向就行,例如A->F打印了就可以表示F->A,并不需求遍历完全部table矩阵信息,同时打印路径信息的第二个for循环有个+1操作是为了避免打印AA、BB这种自己到自己的路径,也就是不打印主对角线,path路径信息的存储也同样用到并查集的部分思想在上一篇博文提过,在代码中通过不断循环path路径能够找到它的前驱结点一步步把所有路径结点信息找到,相比迪杰斯特拉倒着找结点信息,这里我们可以之间通过path二维数组顺序查找到路径信息,也是非常巧妙的!

 我们将创建下面的无向权值图:

84ef03cba4ba478383b338ae5884012a.png

  邻接矩阵的绘制还是手动赋值上三角,并通过矩阵对称性生成整个邻接矩阵,其中最小生成树中需要用到权值,对应原本有边的地方之前我是用1表示,现在改成边对应的权值,之前的0表示没有边,现在改成99表示为无穷,其实应该换成更大的值以确保树的边权值都小于这个最大值,但为了方便对齐显示看邻接矩阵,就使用了比本图中各边长较大的99来表示最大值。

9eefaa5c866742cbb239f5f9de2aff7d.png

Floyd算法代码:

//存储所有顶点的路径信息
typedef int Patharc[MAXVEX][MAXVEX];
//最短路径表copy邻接矩阵,不断扫描更新各顶点相互间的最短距离
typedef int ShortestPathTable[MAXVEX][MAXVEX];
// Floyd算法实现
void Floyd(MGraph G, Patharc path, ShortestPathTable table) {int v, w, k;// 初始化表和路径矩阵for (v = 0; v < G.numNodes; v++) {for (w = 0; w < G.numNodes; w++) {table[v][w] = G.arc[v][w];  // 初始化最短路径表if (G.arc[v][w] < INFINITY) {path[v][w] = w;  // 有直接边时,路径是目标顶点}else {path[v][w] = -1; // 如果没有边,则设为 -1}}}// Floyd算法的核心计算for (k = 0; k < G.numNodes; k++) {  // 遍历每个顶点作为中间顶点for (v = 0; v < G.numNodes; v++) {  // 遍历起点for (w = 0; w < G.numNodes; w++) {  // 遍历终点// 如果通过顶点 k 的路径更短,则更新路径和最短路径表if (table[v][w] > table[v][k] + table[k][w]) {table[v][w] = table[v][k] + table[k][w];path[v][w] = path[v][k];}}}}// 打印各顶点间的最短路径printf("各顶点间最短路径如下:\n");for (v = 0; v < G.numNodes; v++) {for (w = v + 1; w < G.numNodes; w++) {  // 遍历每对顶点//Array数组存储顶点ABCDEFGHprintf("%c-%c weight:%d\n", Array[v], Array[w], table[v][w]);k = path[v][w];  // 从起点到终点的路径printf("path:%d", v);while (k != w) {  // 路径输出printf("->%d", k);k = path[k][w];}printf("->%d\n", w);}printf("\n");}
}

完整代码(包括邻接矩阵的创建、Floyd算法)

#include "stdio.h"    
#include "stdlib.h"   
#include "math.h"  
#include "time.h"// 禁用特定的警告
#pragma warning(disable:4996)// 定义一些常量和数据类型
#define OK 1
#define ERROR 0
#define TRUE 1
#define FALSE 0
#define MAXVEX 8 /* 最大顶点数,用户定义 */
#define MAXEDGE 10 /* 最大边数,用户定义 */
#define GRAPH_INFINITY 99 /* 用0表示∞,表示不存在边 *//* 定义状态、顶点和边的类型 */
typedef int Status;  /* Status是函数的返回类型,如OK表示成功 */
typedef char VertexType; /* 顶点的类型,用字符表示 */
typedef int EdgeType; /* 边上的权值类型,用整数表示 */
typedef int Boolean; /* 布尔类型 */
// 定义顶点标签
char Array[] = "ABCDEFGHI";/* 图的邻接矩阵结构体 */
typedef struct
{VertexType vexs[MAXVEX]; /* 顶点表 */EdgeType arc[MAXVEX][MAXVEX]; /* 邻接矩阵,表示边的权值 */int numNodes, numEdges; /* 图中当前的顶点数和边数 */
} MGraph;//存储所有顶点的路径信息
typedef int Patharc[MAXVEX][MAXVEX];
//最短路径表copy邻接矩阵,不断扫描更新各顶点相互间的最短距离
typedef int ShortestPathTable[MAXVEX][MAXVEX];/* 创建一个无向网图的邻接矩阵表示 */
void CreateMGraph(MGraph* G)
{int i, j, k, w;// 初始化图的顶点数和边数G->numNodes = 8;G->numEdges = 10;// 初始化邻接矩阵和顶点表for (i = 0; i < G->numNodes; i++) {for (j = 0; j < G->numNodes; j++) {G->arc[i][j] = GRAPH_INFINITY; /* 初始化邻接矩阵为∞ */}G->vexs[i] = Array[i]; /* 初始化顶点表 */}G->arc[0][0] = GRAPH_INFINITY;G->arc[0][1] = 10;G->arc[0][2] = GRAPH_INFINITY;G->arc[0][3] = GRAPH_INFINITY;G->arc[0][4] = GRAPH_INFINITY;G->arc[0][5] = 11;G->arc[0][6] = GRAPH_INFINITY;G->arc[0][7] = GRAPH_INFINITY;G->arc[1][0] = GRAPH_INFINITY;G->arc[1][1] = GRAPH_INFINITY;G->arc[1][2] = 23;G->arc[1][3] = GRAPH_INFINITY;G->arc[1][4] = GRAPH_INFINITY;G->arc[1][5] = GRAPH_INFINITY;G->arc[1][6] = 12;G->arc[1][7] = GRAPH_INFINITY;G->arc[2][0] = GRAPH_INFINITY;G->arc[2][1] = GRAPH_INFINITY;G->arc[2][2] = GRAPH_INFINITY;G->arc[2][3] = 21;G->arc[2][4] = GRAPH_INFINITY;G->arc[2][5] = GRAPH_INFINITY;G->arc[2][6] = GRAPH_INFINITY;G->arc[2][7] = GRAPH_INFINITY;G->arc[3][0] = GRAPH_INFINITY;G->arc[3][1] = GRAPH_INFINITY;G->arc[3][2] = GRAPH_INFINITY;G->arc[3][3] = GRAPH_INFINITY;G->arc[3][4] = GRAPH_INFINITY;G->arc[3][5] = GRAPH_INFINITY;G->arc[3][6] = GRAPH_INFINITY;G->arc[3][7] = 11;G->arc[4][0] = GRAPH_INFINITY;G->arc[4][1] = GRAPH_INFINITY;G->arc[4][2] = GRAPH_INFINITY;G->arc[4][3] = GRAPH_INFINITY;G->arc[4][4] = GRAPH_INFINITY;G->arc[4][5] = 47;G->arc[4][6] = GRAPH_INFINITY;G->arc[4][7] = 80;G->arc[5][0] = GRAPH_INFINITY;G->arc[5][1] = GRAPH_INFINITY;G->arc[5][2] = GRAPH_INFINITY;G->arc[5][3] = GRAPH_INFINITY;G->arc[5][4] = GRAPH_INFINITY;G->arc[5][5] = GRAPH_INFINITY;G->arc[5][6] = 6;G->arc[5][7] = GRAPH_INFINITY;G->arc[6][0] = GRAPH_INFINITY;G->arc[6][1] = GRAPH_INFINITY;G->arc[6][2] = GRAPH_INFINITY;G->arc[6][3] = GRAPH_INFINITY;G->arc[6][4] = GRAPH_INFINITY;G->arc[6][5] = GRAPH_INFINITY;G->arc[6][6] = GRAPH_INFINITY;G->arc[6][7] = 8;G->arc[7][0] = GRAPH_INFINITY;G->arc[7][1] = GRAPH_INFINITY;G->arc[7][2] = GRAPH_INFINITY;G->arc[7][3] = GRAPH_INFINITY;G->arc[7][4] = GRAPH_INFINITY;G->arc[7][5] = GRAPH_INFINITY;G->arc[7][6] = GRAPH_INFINITY;G->arc[7][7] = GRAPH_INFINITY;// 由于是无向图,邻接矩阵是对称的,需要将其对称for (int i = 0; i < G->numNodes; i++) {for (int j = 0; j < G->numNodes; j++) {G->arc[j][i] = G->arc[i][j];}}// 打印邻接矩阵printf("邻接矩阵为:\n");printf("     ");for (int i = 0; i < G->numNodes; i++) {printf("%2d ", i); /* 打印列索引 */}printf("\n     ");for (int i = 0; i < G->numNodes; i++) {printf("%2c ", G->vexs[i]); /* 打印顶点标签 */}printf("\n");for (int i = 0; i < G->numNodes; i++) {printf("%2d", i); /* 打印行索引 */printf("%2c ", G->vexs[i]); /* 打印顶点标签 */for (int j = 0; j < G->numNodes; j++) {if (G->arc[i][j] != 99) {printf("\033[31m%02d \033[0m", G->arc[i][j]); /* 打印邻接矩阵中的权值 */}else {printf("%02d ", G->arc[i][j]); /* 打印邻接矩阵中的权值 */}}printf("\n");}
}// Floyd算法实现
void Floyd(MGraph G, Patharc path, ShortestPathTable table) {int v, w, k;// 初始化表和路径矩阵for (v = 0; v < G.numNodes; v++) {for (w = 0; w < G.numNodes; w++) {table[v][w] = G.arc[v][w];  // 初始化最短路径表if (G.arc[v][w] < INFINITY) {path[v][w] = w;  // 有直接边时,路径是目标顶点}else {path[v][w] = -1; // 如果没有边,则设为 -1}}}// Floyd算法的核心计算for (k = 0; k < G.numNodes; k++) {  // 遍历每个顶点作为中间顶点for (v = 0; v < G.numNodes; v++) {  // 遍历起点for (w = 0; w < G.numNodes; w++) {  // 遍历终点// 如果通过顶点 k 的路径更短,则更新路径和最短路径表if (table[v][w] > table[v][k] + table[k][w]) {table[v][w] = table[v][k] + table[k][w];path[v][w] = path[v][k];}}}}// 打印各顶点间的最短路径printf("\n各顶点间最短路径如下:\n");for (v = 0; v < G.numNodes; v++) {for (w = v + 1; w < G.numNodes; w++) {  // 遍历每对顶点//Array数组存储顶点ABCDEFGHprintf("%c-%c weight:%d\n", Array[v], Array[w], table[v][w]);k = path[v][w];  // 从起点到终点的路径printf("path:%d", v);while (k != w) {  // 路径输出printf("->%d", k);k = path[k][w];}printf("->%d\n", w);}printf("\n");}
}// 主函数
int main(void) {MGraph G;/* 创建图 */CreateMGraph(&G);  // 创建并初始化图 GPatharc path;ShortestPathTable table;Floyd(G, path, table);  // 计算最短路径return 0;
}

 无向权值图:

84ef03cba4ba478383b338ae5884012a.png

运行结果:

http://www.yayakq.cn/news/834455/

相关文章:

  • 网站文字模板长兴县建设管理网站
  • 公司网站设计是不是一次性收费的宁夏网站设计在哪里
  • 海南网络公司网站建设wordpress 添加外部链接
  • 创新的网站建设公司遵义会议在线
  • 做签证宾馆订单用啥网站网页制作模板的网站代码
  • 企业注册好了怎么做网站微信小程序网站建设
  • 网站技术方案海南省住房和城乡建设官方网站
  • 中国流量最大的网站排行合肥专业网站制作
  • 天津哪里做网站学校网站 功能
  • 类似非小号的网站怎么做网站建设规划文案
  • 厦门广告公司网站建设百度网页版链接地址
  • 关于做网站的笑话网站自适应布局 html5
  • 社区网站如何做移动互联网开发招人
  • 南京网站优化建站如何给wordpress上传较大视频
  • 重庆网站建设公司有哪些内容谁的网站模板利于优化
  • 天津正规制作网站公司cnetos 7 wordpress
  • 阜阳网站优化中国空间站进展
  • 网站建设项目结构分析报告seo网站内部优化
  • 访问国外网站好慢安庆网站建设公司
  • 石家庄网站建设外贸wordpress google统计
  • 域名注册商有哪些学seo网站推广好吗
  • 多企业宣传网站建设义乌外贸网站开发
  • 又快又好自助建站系统房屋设计图纸平面图
  • 网站建设 聊城租点点电脑租赁公司
  • 如何编程建设网站自己wordpress手机版设置
  • 崇左网站建设公司服装网站建设策划书论文
  • 深圳大型网站建设服务公司建站哪家好 phpwind
  • 仙桃网站建设公司产品网络推广深圳
  • 做韩国网站有哪些东西吗专业柳州网站建设哪家便宜
  • 杭州市拱墅区建设局网站中山 灯饰 骏域网站建设专家