当前位置: 首页 > news >正文

企业国际网站建设app开发和网站开发一样么

企业国际网站建设,app开发和网站开发一样么,怎么对网站上的游记做数据分析,广告优化目录 1. YOLO 2. YOLO V1 3. YOLO V2 4. YOLO V3 5. YOLO V3 SPP网络 5.1 Mosaic 图像增强 5.2 SPP 模块 5.3 CIou Loss 5.4 Focal loss 1. YOLO YOLO 是目标检测任务强大的算法,将目标检测的问题转换边界框和相关概率的回归问题,是目标检测…

目录

1. YOLO 

2. YOLO V1

3. YOLO V2

4. YOLO V3

5. YOLO V3 SPP网络

5.1 Mosaic 图像增强

5.2 SPP 模块

5.3 CIou Loss

5.4 Focal loss


1. YOLO 

YOLO 是目标检测任务强大的算法,将目标检测的问题转换边界框和相关概率的回归问题,是目标检测单阶段的代表。

YOLO 的全称是You Only Look Once

本章只会对YOLO的前三个版本进行简单的介绍,后面会根据YOLO V3 SPP的trick版本进行训练

2. YOLO V1

yolo v1的代表图如下:

注意:yolo v1没有anchor 的概念

yolo v1将输入图像经过特征提取后,划分为 7 * 7(S = 7)个grid cell每一个grid cell 会预测两个边界框(B = 2),而yolo v1是在PASCAL VOC 20 个类别进行训练的,所以每一个边界框还会预测20个类别得分(C = 20)

其中每一个预测框还包括五个输出,前四个为边界框的x,y,w,h,最后一个是置信度,其实就是预测目标和真实ground truth的iou 。

每一个grid cell 产生两个边界框,由最好的那个边界框负责拟合真实的gt

所以,yolo v1的输入是一幅图像,输出是 7 * 7 *(2*5 + 20) = 7*7*30的张量(20个类别的得分是共享的)

yolo v1 的缺点:

  • 因为7*7的网格只会预测49个物体,所以yolo v1对密集的物体或者多个小物体的检测不是很好
  • 定位精度较差,没有像 faster-rcnn 那样基于anchor的准确

3. YOLO V2

yolo v2 相比于v1 增加了很多 ideas

总而言之,yolo v2的输入是416*416,输出是13*13(grid cell)*5(每一个网格预测五个边界框)* (5*20)的张量

4. YOLO V3

yolo v3输出是3个尺度的,分别是输入图像下采样的8、16、32倍。而一般输入的size是416*416,下采样后的三个尺度是52*52,26*26,13*13

yolo v3更改了网络的backbone,具体的yolo v3如下:

yolo v3输出的预测特征图是三个尺度,每一个grid cell 预测3个边界框,而每一个预测框产生4个坐标偏移值,1个置信度和80个coco的类别得分

关于偏移量,如下:

x、y 相对于每个grid cell左上角的偏移,经过sigmoid可以限制到0-1之间,这样预测的x、y就不会跑出对应的grid cell外面。w,h 相对于全图的缩放比例

关于正负样本分配:

正样本:针对于gt而已,预测最好的为正样本。每一个gt都会分配一个正样本

忽略的样本:预测的还行,但是不是最好的,例如与gt的iou >0.5,那么这类边界框忽略

负样本:剩下的样本均为负样本

5. YOLO V3 SPP网络

YOLO V3 SPP网络对提升网络性能增加了很多的tricks

5.1 Mosaic 图像增强

将多个图像拼接在一起训练,可以增加数据的多样性、单幅图像目标的个数也会增多

这里默认4张图像拼接

 

5.2 SPP 模块

多尺度输出结果前,仅仅在第一个前面增加了SPP模块,实现了不同尺度的信融合

 

5.3 CIou Loss

CIou Loss 损失

 

  • 关于iou loss:

缺点是预测框和gt没有重合的时候,loss = 0

 

  • 关于giou loss:绿色为预测,红色为gt

预测框和gt完美融合,giou = 1;预测框和gt相距无穷远,giou = -1

 giou 的缺点:

 

  • 关于Diou loss:distance iou

iou loss 和 giou loss 有两个问题:收敛太慢、回归不够准确

 预测框和gt完美融合,diou = 1;预测框和gt相距无穷远,diou = -1

 

  • 关于Ciou loss:

 

5.4 Focal loss

Focal loss 最初用于图像领域解决数据不平衡造成的模型性能问题

 

http://www.yayakq.cn/news/80800/

相关文章:

  • 论文引用网站数据 如何做注释建网站和建网页的区别
  • 交通局网站建设方案网站做app服务端
  • 在建设网站入账电商运营培训课程
  • 领地申请的网站能备案吗济南网站建设富库网络
  • 为什么做网站费用贵蚌埠百度做网站
  • wordpress主题转html和田地seo
  • 常州网站设计平台江阴做网站
  • 什么网站可以快速做3d效果图茶具网站模板
  • 手机网站php开发百度站长平台账号
  • 阿里云增加网站石青淘宝推广工具
  • 石河子市住房和城乡建设局网站wordpress适合做博客的主题
  • 在线学习网站建设石家庄市网站建设
  • 做网站的技术风险宁波网络推广渠道有哪些
  • 免费的个人空间建网站淘宝放单网站怎么做的
  • 做网站的素材包含哪些招聘信息设计
  • 淘宝建站服务google关键词分析工具
  • 做磁性材料在哪些网站推广比较好长沙优化网站服务
  • 91大神网站建设重庆餐饮加盟网站建设
  • 做美陈3d模型网站wordpress网站如何迁移
  • 网站首页修改中国移动采购与招标网
  • 常州app网站html编辑器安卓版手机版软件
  • 专业网站制作仪表多少钱c2c网站的主要功能
  • 做网站建设怎么介绍自己哪个网站做布料好
  • 网站推广怎么做比较好wordpress hankin
  • 怎么做直播网站超管网站后台登录域名
  • 营销型网站建设iop外网通过域名访问内网服务器
  • 网站地图生成工具贸易公司
  • 网站备案拍照背景幕布网络基础架构
  • 自己开网站怎么开免费咨询产科医生
  • wordpress建站云平台网站平台建设项目检查汇报材料