当前位置: 首页 > news >正文

文登做网站的公司网站备案证书下载失败

文登做网站的公司,网站备案证书下载失败,中国建筑集团排名,怎么做企业功能网站导数、梯度、雅可比矩阵、黑塞矩阵都是与求导相关的一些概念,比较容易混淆,本文主要是对它们的使用场景和定义进行区分。 首先需要先明确一些函数的叫法(是否多元,以粗体和非粗体进行区分): 一元函数&…

导数、梯度、雅可比矩阵、黑塞矩阵都是与求导相关的一些概念,比较容易混淆,本文主要是对它们的使用场景和定义进行区分。

首先需要先明确一些函数的叫法(是否多元,以粗体和非粗体进行区分):

  • 一元函数 f ( x ) : R ⟶ R f(x):\mathbb{R} \longrightarrow \mathbb{R} f(x):RR
  • 多元函数 f ( x ) : R n ⟶ R f(\mathbf{x}):\mathbb{R}^{n} \longrightarrow \mathbb{R} f(x):RnR
  • 向量函数 f ( x ) : R n ⟶ R m \mathbf{f(x)}:\mathbb{R}^{n} \longrightarrow \mathbb{R}^{m} f(x):RnRm

例如:

  • 函数 y = x y=x y=x为一元函数
  • 函数 y = x 1 + 2 x 2 y=x_1+2x_2 y=x1+2x2为多元函数
  • 函数 { y 1 = x 1 + 2 x 2 y 2 = 2 x 1 + x 2 \begin{cases} y_1 =x_1+2x_2 \\ y_2=2x_1+x_2 \end{cases} {y1=x1+2x2y2=2x1+x2为向量函数

概念详解

导数

针对一元函数: f ( x ) : R ⟶ R f(x):\mathbb{R} \longrightarrow \mathbb{R} f(x):RR,近似:

f ( x ) ≈ f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) f(x)\approx f(x_{0})+f^{\prime}(x_{0})(x-x_{0}) f(x)f(x0)+f(x0)(xx0)

梯度

针对多元函数: f ( x ) : R n ⟶ R f(\mathbf{x}):\mathbb{R}^{n} \longrightarrow \mathbb{R} f(x):RnR,是导数的推广, 它的结果是一个向量:

▽ f = [ ∂ f ∂ x 1 ∂ f ∂ x 2 . . . ∂ f ∂ x n ] \bigtriangledown f=\begin{bmatrix} \frac{\partial f}{\partial x_{1}} \\ \frac{\partial f}{\partial x_{2}} \\ ... \\ \frac{\partial f}{\partial x_{n}} \end{bmatrix} f= x1fx2f...xnf

近似:

f ( x ) ≈ f ( x 0 ) + ▽ f ( x 0 ) ( x − x 0 ) f(\mathbf{x} )\approx f(\mathbf{x}_{0})+\bigtriangledown f(\mathbf{x}_{0})(\mathbf{x}-\mathbf{x}_{0}) f(x)f(x0)+f(x0)(xx0)

雅可比矩阵

针对向量函数: f ( x ) : R n ⟶ R m \mathbf{f(x)}:\mathbb{R}^{n} \longrightarrow \mathbb{R}^{m} f(x):RnRm

如果函数 f ( x ) : R n ⟶ R m \mathbf{f(x)}:\mathbb{R}^{n} \longrightarrow \mathbb{R}^{m} f(x):RnRm在点 x \mathbf{x} x处可微的话,在点 x \mathbf{x} x的雅可比矩阵即为该函数在该点的最佳线性逼近,也代表雅可比矩阵是一元函数的导数在向量函数的推广。在这种情况下,雅可比矩阵也被称作函数 f \mathbf{f} f在点 x \mathbf{x} x的微分或者导数,其中行数为 f \mathbf{f} f的维数;列数为 x \mathbf{x} x的维度

J = [ ∂ f ∂ x 1 . . . ∂ f ∂ x n ] = [ ∂ f 1 ∂ x 1 . . . ∂ f 1 ∂ x n ⋮ ⋱ ⋮ ∂ f m ∂ x 1 . . . ∂ f m ∂ x n ] \mathbf{J}=\begin{bmatrix} \frac{\partial \mathbf{f}}{\partial x_{1}} & ... & \frac{\partial \mathbf{f}}{\partial x_{n}} \end{bmatrix} = \begin{bmatrix} \frac{\partial f_{1}}{\partial x_{1}} & ... & \frac{\partial f_{1}}{\partial x_{n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_{m}}{\partial x_{1}} & ... & \frac{\partial f_{m}}{\partial x_{n}} \end{bmatrix} J=[x1f...xnf]= x1f1x1fm......xnf1xnfm

矩阵分量:

J i j = ∂ f i ∂ x j \mathbf{J}_{ij}=\frac{\partial f_{i}}{\partial x_{j}} Jij=xjfi

近似:

f ( x ) ≈ f ( x 0 ) + J ( x 0 ) ( x − x 0 ) \mathbf{f}(\mathbf{x} )\approx \mathbf{f}(\mathbf{x}_{0})+ \mathbf{J}(\mathbf{x}_{0})(\mathbf{x}-\mathbf{x}_{0}) f(x)f(x0)+J(x0)(xx0)

黑塞矩阵

针对多元函数: f : R n ⟶ R f:\mathbb{R}^{n} \longrightarrow \mathbb{R} f:RnR,有点二阶导数的意思。

H = [ ∂ 2 f ∂ x 1 2 ∂ 2 f ∂ x 1 ∂ x 2 . . . ∂ 2 f ∂ x 1 ∂ x n ∂ 2 f ∂ x 2 ∂ x 1 ∂ 2 f ∂ x 2 2 . . . ∂ 2 f ∂ x 2 ∂ x n ⋮ ⋮ ⋱ ⋮ ∂ 2 f ∂ x n ∂ x 1 ∂ 2 f ∂ x n ∂ x 2 . . . ∂ 2 f ∂ x n 2 ] \mathbf{H}=\begin{bmatrix} \frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1}\partial x_{2}} & ... & \frac{\partial^{2} f}{\partial x_{1}\partial x_{n}} \\ \frac{\partial^{2} f}{\partial x_{2}\partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}^{2}} & ... & \frac{\partial^{2} f}{\partial x_{2}\partial x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2} f}{\partial x_{n}\partial x_{1}} & \frac{\partial^{2} f}{\partial x_{n}\partial x_{2}} & ... & \frac{\partial^{2} f}{\partial x_{n}^{2}} \end{bmatrix} H= x122fx2x12fxnx12fx1x22fx222fxnx22f.........x1xn2fx2xn2fxn22f

矩阵分量:

H i j = ∂ 2 f ∂ x i ∂ x j \mathbf{H}_{ij}=\frac{\partial^{2} f}{\partial x_{i}\partial x_{j}} Hij=xixj2f

近似:

f ( x ) ≈ f ( x 0 ) + ▽ f ( x 0 ) ( x − x 0 ) + 1 2 ( x − x 0 ) T H ( x 0 ) ( x − x 0 ) f(\mathbf{x} )\approx f(\mathbf{x}_{0})+\bigtriangledown f(\mathbf{x}_{0})(\mathbf{x}-\mathbf{x}_{0}) + \frac{1}{2}(\mathbf{x}-\mathbf{x}_{0})^{T}\mathbf{H}(\mathbf{x}_{0})(\mathbf{x}-\mathbf{x}_{0}) f(x)f(x0)+f(x0)(xx0)+21(xx0)TH(x0)(xx0)


实例

对于最简单的一元函数 y = 2 x y=2x y=2x,则该一元函数的导数为: y ′ = 2 y^{\prime}=2 y=2。这是最基础的了。

对于一个多元函数 y = x 1 4 x 2 + 3 x 2 + x 2 e x 3 y=x_1^4x_2+3x_2+x_2e^{x_3} y=x14x2+3x2+x2ex3,则:

该多元函数的梯度为:

▽ = [ ∂ y ∂ x 1 ∂ y ∂ x 2 ∂ y ∂ x 3 ] = [ 4 x 1 3 x 2 x 1 4 + 3 + e x 3 x 2 e x 3 ] \bigtriangledown =\begin{bmatrix} \frac{\partial y}{\partial x_1} \\ \frac{\partial y}{\partial x_2} \\ \frac{\partial y}{\partial x_3} \end{bmatrix}=\begin{bmatrix} 4x_1^3x_2 \\ x_1^4+3+e^{x_3} \\ x_2e^{x_3}\end{bmatrix} = x1yx2yx3y = 4x13x2x14+3+ex3x2ex3

该多元函数的黑塞矩阵为:

H = [ ∂ 2 y ∂ x 1 2 ∂ 2 y ∂ x 1 ∂ x 2 ∂ 2 y ∂ x 1 ∂ x 3 ∂ 2 y ∂ x 2 ∂ x 1 ∂ 2 y ∂ x 2 2 ∂ 2 y ∂ x 2 ∂ x 3 ∂ 2 y ∂ x 3 ∂ x 1 ∂ 2 y ∂ x 3 ∂ x 2 ∂ 2 y ∂ x 3 2 ] = [ 12 x 1 2 x 2 4 x 1 3 0 4 x 1 3 0 e x 3 0 e x 3 x 2 e x 3 ] \mathbf{H}=\begin{bmatrix} \frac{\partial^{2} y}{\partial x_{1}^{2}} & \frac{\partial^{2} y}{\partial x_{1}\partial x_{2}} & \frac{\partial^{2} y}{\partial x_{1}\partial x_{3}} \\ \frac{\partial^{2} y}{\partial x_{2}\partial x_{1}} & \frac{\partial^{2} y}{\partial x_{2}^{2}} & \frac{\partial^{2} y}{\partial x_{2}\partial x_{3}} \\ \frac{\partial^{2} y}{\partial x_{3}\partial x_{1}} & \frac{\partial^{2} y}{\partial x_{3}\partial x_{2}} & \frac{\partial^{2} y}{\partial x_{3}^{2}} \end{bmatrix} = \begin{bmatrix} 12x_1^2x_2 & 4x_1^3 & 0\\ 4x_1^3 & 0 & e^{x_3}\\ 0 & e^{x_3} & x_2e^{x_3} \end{bmatrix} H= x122yx2x12yx3x12yx1x22yx222yx3x22yx1x32yx2x32yx322y = 12x12x24x1304x130ex30ex3x2ex3

视该多元函数的梯度为一个向量函数,即:

{ y 1 = 4 x 1 3 x 2 y 2 = x 1 4 + 3 + e x 3 y 3 = x 2 e x 3 \begin{cases} y_1 =4x_1^3x_2 \\ y_2=x_1^4+3+e^{x_3} \\ y_3=x_2e^{x_3} \end{cases} y1=4x13x2y2=x14+3+ex3y3=x2ex3

那么,该多元函数的雅可比矩阵为:

J = [ ∂ y 1 ∂ x 1 ∂ y 1 ∂ x 2 ∂ y 1 ∂ x 3 ∂ y 2 ∂ x 1 ∂ y 2 ∂ x 2 ∂ y 2 ∂ x 3 ∂ y 3 ∂ x 1 ∂ y 3 ∂ x 2 ∂ y 3 ∂ x 3 ] = [ 12 x 1 2 x 2 4 x 1 3 0 4 x 1 3 0 e x 3 0 e x 3 x 2 e x 3 ] \mathbf{J}= \begin{bmatrix} \frac{\partial y_{1}}{\partial x_{1}} & \frac{\partial y_{1}}{\partial x_{2}} & \frac{\partial y_{1}}{\partial x_{3}} \\ \frac{\partial y_{2}}{\partial x_{1}} & \frac{\partial y_{2}}{\partial x_{2}} & \frac{\partial y_{2}}{\partial x_{3}} \\ \frac{\partial y_{3}}{\partial x_{1}} & \frac{\partial y_{3}}{\partial x_{2}} & \frac{\partial y_{3}}{\partial x_{3}} \end{bmatrix} = \begin{bmatrix} 12x_1^2x_2 & 4x_1^3 & 0\\ 4x_1^3 & 0 & e^{x_3}\\ 0 & e^{x_3} & x_2e^{x_3} \end{bmatrix} J= x1y1x1y2x1y3x2y1x2y2x2y3x3y1x3y2x3y3 = 12x12x24x1304x130ex30ex3x2ex3

可以看出,黑塞矩阵是多元函数 f ( x ) f(\mathbf{x}) f(x)的梯度对自变量 x \mathbf{x} x的雅可比矩阵。


总结

  • 梯度是雅可比矩阵的一个特例:当向量函数为标量函数时( f \mathbf{f} f向量维度为1),雅可比矩阵是梯度向量
  • 黑塞矩阵是多元函数 f ( x ) f(\mathbf{x}) f(x)的梯度对自变量 x \mathbf{x} x的雅可比矩阵

相关阅读

  • 多元函数的泰勒(Taylor)展开式
  • 梯度vs Jacobian矩阵vs Hessian矩阵
  • 导数、梯度、 Jacobian、Hessian
http://www.yayakq.cn/news/416534/

相关文章:

  • 网站建设每天需要做什么网站策划选题
  • 菏泽做公司简介网站江都住房和建设局网站
  • 公司网站制作苏州有没有做淘宝网站的
  • 网站重新备案 需要关闭网站么jsp网站开发的参考文献
  • 百捷网站建设江门网站设计模板
  • 建站之星模板好吗1分钟视频制作报价明细
  • 淘宝搜券的网站怎么做个人网页制作源代码格式
  • dedecms关闭网站免费做外贸网站
  • 招商信息发布网站大全如何做彩票网站的源码
  • 在1688做公司网站本地运行wordpress
  • 大型门户网站开发案例家居类企业响应式网站
  • 公司做网站的费用怎么记账广州天河区租房哪里便宜
  • 芜湖高端网站建设公司招商网站有哪些
  • 线上网站开发系统流程图旅游的网站怎么做的
  • 徐州旅游的网站建设网站里面内外链接如何做
  • 网站开发速成班高端网页设计模板
  • 广州 网站制海南省建设考试网站首页
  • 微官网和手机网站一样吗wordpress 插件破解
  • 建网站的公司有哪些免费制作网页平台
  • 男人和女人做羞羞的事情网站凡科网让经营更简单
  • 云渲染网站开发手机app模板
  • 如何做简单的网站简单的手机网页制作
  • 免费的seo网站膝专业的网站制作开发公司
  • 做电影采集网站需要多大vps企业网站设计图片
  • 局网站信息内容建设 自查报告跑业务怎么找客户
  • 优秀网站建设空间城乡建设部网站自助商品房
  • 网站开发可行性报告设计官网和推广的公司
  • 想给公司做网站怎么做网站关键词最多几个
  • 网站建设uuiop柳州建网站
  • 开发网站实训的心得体会建筑企业网