当前位置: 首页 > news >正文

重新建设网站山西常见网站建设推荐优化

重新建设网站,山西常见网站建设推荐优化,青岛网站制作流程,紫金保险车险官方网站大家好,我是微学AI,今天给大家介绍一下人工智能算法工程师(中级)课程6-sklearn机器学习之聚类问题与代码详解。在机器学习领域,聚类是一种无监督学习方法,旨在将相似的数据点划分为同一类别。sklearn是一个广泛应用于机器学习的Py…

大家好,我是微学AI,今天给大家介绍一下人工智能算法工程师(中级)课程6-sklearn机器学习之聚类问题与代码详解。在机器学习领域,聚类是一种无监督学习方法,旨在将相似的数据点划分为同一类别。sklearn是一个广泛应用于机器学习的Python库,提供了多种聚类算法。本文将详细介绍K-Means、DBSCAN和层次聚类这三种算法的数学原理、公式及实现代码。

文章目录

  • sklearn机器学习之聚类问题与代码详解
    • 1.K-Means算法
      • K-Means的数学原理
      • K-Means的公式
      • K-Means算法代码实现
    • 2.DBSCAN算法
      • DBSCAN算法数学原理
      • DBSCAN算法公式
      • DBSCAN算法代码实现
    • 3.层次聚类
      • 层次聚类数学原理
      • 层次聚类公式
      • 层次聚类代码实现
    • 总结

在这里插入图片描述

sklearn机器学习之聚类问题与代码详解

1.K-Means算法

K-Means的数学原理

K-Means算法是一种基于距离的聚类方法。其目标是将数据集划分为K个簇,使得每个数据点与其所属簇的中心点距离最小。
K-Means算法过程如下:
-初始化:随机选择K个数据点作为初始聚类中心。
-分配步骤:对于数据集中的每一个数据点,计算它与每个聚类中心的距离,并将其分配到最近的聚类中心所代表的簇中。
-更新步骤:重新计算每个簇的中心点。新的聚类中心是该簇所有数据点的均值,即取簇内所有点的坐标的平均值。
-迭代:重复步骤2和步骤3,直到满足停止条件。停止条件可以是聚类中心的变化小于某个阈值、达到预设的迭代次数或者数据点的簇分配不再改变。
-结束:当聚类中心的变化小于预设的阈值或达到最大迭代次数时,算法停止迭代,此时的聚类中心即为最终结果。

K-Means的公式

设数据集为X,聚类中心为C,则K-Means算法的目标函数为:
J = ∑ i = 1 K ∑ x ∈ S i ∣ ∣ x − c i ∣ ∣ 2 J = \sum_{i=1}^{K} \sum_{x \in S_i} ||x - c_i||^2 J=i=1KxSi∣∣xci2
其中, S i S_i Si表示第i个簇, c i c_i ci表示第i个簇的中心点。

K-Means算法代码实现

from sklearn.cluster import KMeans
import numpy as np
# 生成数据
X = np.random.rand(100, 2)
# 初始化KMeans
kmeans = KMeans(n_clusters=3)
# 拟合数据
kmeans.fit(X)
# 预测结果
labels = kmeans.predict(X)
# 输出聚类中心
print("聚类中心:", kmeans.cluster_centers_)

2.DBSCAN算法

DBSCAN算法数学原理

DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一种基于密度的聚类算法。它将具有足够高密度的区域划分为簇,并可以发现任意形状的簇。

DBSCAN算法公式

DBSCAN算法涉及以下两个参数:

  • ε(邻域半径):判断一个点是否为核心点的邻域半径
  • MinPts(最小样本数):判断一个核心点是否为边界点的最小样本数
    一个点p的密度可达点定义为:从p出发,通过密度相连的点可以到达的所有点。

DBSCAN算法的过程如下:
1.参数选择:首先,需要选择两个参数:

  • ε(epsilon):邻域半径,表示一个点的邻域大小。
  • MinPts:最小样本数,表示一个区域内至少需要多少个点才能被视为密度可达。
    2.核心点识别:对于数据集中的每个点,计算以该点为中心、半径为ε的邻域内的点的数量。如果这个数量大于或等于MinPts,则该点被称为核心点。
    3.密度直达:如果一个点p在另一个核心点q的ε邻域内,那么点p由点q密度直达。
    4.密度可达:如果一个点p由核心点q密度直达,核心点q由核心点r密度直达,以此类推,形成一条链,那么点p由点r密度可达,即使点p不在点r的ε邻域内。
    5.簇的形成:从数据集中任意选择一个未访问过的核心点开始,找出所有从这个点密度可达的核心点,这些点组成一个簇。重复这个过程,直到所有核心点都被访问过。
    6.噪声点的识别:所有不是核心点且不与任何核心点密度可达的点被认为是噪声点。
    在这里插入图片描述

DBSCAN算法代码实现

from sklearn.cluster import DBSCAN
import numpy as np
# 生成数据
X = np.random.rand(100, 2)
# 初始化DBSCAN
dbscan = DBSCAN(eps=0.3, min_samples=5)
# 拟合数据
dbscan.fit(X)
# 预测结果
labels = dbscan.labels_
# 输出聚类结果
print("聚类结果:", labels)

3.层次聚类

层次聚类数学原理

层次聚类(Hierarchical Clustering)是一种逐步合并或分裂的聚类方法。它分为自底向上(凝聚)和自顶向下(分裂)两种策略。

层次聚类公式

层次聚类的相似度计算方法有多种,如最小距离、最大距离和平均距离等。以下是最小距离的计算公式:
d m i n ( C i , C j ) = min ⁡ x ∈ C i , y ∈ C j ∣ ∣ x − y ∣ ∣ d_{min}(C_i, C_j) = \min_{x \in C_i, y \in C_j} ||x - y|| dmin(Ci,Cj)=xCi,yCjmin∣∣xy∣∣
在这里插入图片描述

层次聚类代码实现

from sklearn.cluster import AgglomerativeClustering
import numpy as np
# 生成数据
X = np.random.rand(100, 2)
# 初始化层次聚类
agg_clustering = AgglomerativeClustering(n_clusters=3, linkage='ward')
# 拟合数据
agg_clustering.fit(X)
# 预测结果
labels = agg_clustering.labels_
# 输出聚类结果
print("聚类结果:", labels)

总结

本篇文章详细介绍了sklearn中三种常见的聚类算法:K-Means、DBSCAN和层次聚类。通过数学原理、公式及代码实现,帮助读者更好地理解和应用这些算法。在实际应用中,根据数据特点选择合适的聚类算法至关重要。希望本文对您有所帮助!

http://www.yayakq.cn/news/704051/

相关文章:

  • 搜索引擎网站的结构连云港企业做网站
  • 宝塔做的网站能不能访问竞价托管公司排名
  • 做网站的如何找业务wordpress小米论坛主题
  • 合肥网站制作公司排名个人求职网站html
  • 企业网站建站做泥网站
  • 有关网站建设的网站wordpress 屏蔽广告
  • 企业网站如何建立室内软装设计软件
  • 长春网站业务哪个公司好公司网站推广方法
  • app网站开发公司的logo网站快速备案
  • ps网站主页按钮怎么做如何保持网站中的图片
  • 网站开发 浏览器景观设计公司名称
  • 广东网站建设多少钱徐州网站建设开发
  • 商务型网站有哪些wordpress媒体库增加分类
  • 个人淘宝客网站网站开发工具简述
  • 天津百度做网站多少钱建站公司服务
  • 买东西最便宜的网站龙海网站建设价格
  • 知名网站用的技术百度竞价推广代运营话术
  • 友点企业网站管理系统忘记密码河源市连平县建设局网站
  • 原创 网站 源码好买卖做网站
  • 网站小游戏怎么做的电子商务是最差的专业吗
  • 上海网站建设设wordpress 二次开发视频教程下载
  • 社交网站开发意义视频互动网站建设
  • iis装网站建设工程八大员考试网站
  • 百度做一个网站多少钱手机网站判断跳转代码怎么写
  • 泰州市高港区建设局网站学校网站做网页飘窗怎么做
  • 杭州网站制作平台网站建设找哪一家好
  • 微网站栏目图标特价网站建设价格
  • 公司注册网上核名一直提交不成功兰州网络推广优化网
  • 青海专业网页设计免费建站网站视频建设
  • 网站建设不能在淘宝发布小程序制作平台排行榜前十名