当前位置: 首页 > news >正文

凤翔网站建设wordpress添加子主题

凤翔网站建设,wordpress添加子主题,短网址生成器免费,上海外贸论坛在当今信息爆炸的时代,文本处理任务层出不穷,其中人名提取作为基础且重要的工作,广泛应用于信息检索、社交网络分析、客户关系管理等领域。随着人工智能不断进步,ML.NET作为微软推出的开源机器学习框架,为开发者提供了…

在当今信息爆炸的时代,文本处理任务层出不穷,其中人名提取作为基础且重要的工作,广泛应用于信息检索、社交网络分析、客户关系管理等领域。随着人工智能不断进步,ML.NET作为微软推出的开源机器学习框架,为开发者提供了高效、便捷的工具来实现人名提取功能,极大地提升了开发效率与模型的准确性。

一、理解需求与数据准备

首先,明确任务的目标十分重要。人名提取的主要任务是从各类文本中识别出人名。这些文本可以来源于新闻报道、社交媒体帖子、小说故事等各种材料,开发者需收集多样的数据集,以涵盖古今中外不同风格的文本。这些文本既要有正式书面语,也应包含口语化、网络化的表达风格。

对于数据的标注,开发者需要将文本中的人名准确标记,以形成监督学习所需的带标签样本。比如,在句子李白在将进酒中抒发豪情中,李白应被标注为人名。这一过程虽然繁琐,但它将为后续模型训练打下坚实的基础。

二、模型选择与构建

在ML.NET中,提供了多种机器学习算法供开发者选择。针对人名提取任务,序列标注模型如条件随机场CRF极为适合,因为它能够考虑文本序列的上下文信息,依据前后词特征判断当前词是否为人名。

三、定义数据模型

在ML.NET中,我们需要定义输入和输出数据模型。对于NER任务,输入是一个文本字符串,而输出是字符串中每个单词的标签例如,确定一个单词是否为人名。以下是一个简单的数据模型示例:

复制
public class InputData 
{ [LoadColumn(0)] public string Text { get; set; } 
} public class OutputData 
{ [ColumnName(PredictedLabel)] public string[] PredictedLabels { get; set; } 
}

四、数据加载与预处理

接下来,加载数据集并进行必要的预处理,包括分词、特征提取等。处理过程中,您可能需要识别出文本中的词汇变化,从而更好地构建机器学习模型。预处理后数据代码示例:

复制
var pipeline = mlContext.Transforms.Text.TokenizeIntoWords(Tokens, Text) .Append(mlContext.Transforms.Text.ProduceWordBags(Features, Tokens, ngrams: 1, weighting: NgramExtractingEstimator.WeightingCriteria.Tf)); 
var data = mlContext.Data.LoadFromTextFile<InputData>(path: dataPath, hasHeader: false, separatorChar:  ); 
var transformedData = pipeline.Fit(data).Transform(data);

五、模型训练与评估

通过预处理后的数据,您可以开始训练机器学习模型。在训练完成后,通过测试数据集进行评估,以确保其准确性和有效性。ML.NET提供的多类分类器可以帮助您实现最佳的训练效果。以下是训练和评估的代码示例:

复制
var trainingPipeline = pipeline.Append(mlContext.MulticlassClassification.Trainers.Sdca(new SdcaMultiClassTrainer.Options { MaximumNumberOfIterations = 1000 })); 
var model = trainingPipeline.Fit(transformedData); 
var metrics = mlContext.MulticlassClassification.Evaluate(pr
edictions);

六、使用模型提取人名

模型训练完成后,即可利用经过优化的机器学习模型,来对新文本进行人名提取。实现这一过程的代码如下:

var predictionEngine = mlContext.Model.CreatePredictionEngine<InputData, OutputData>(model); 
var input = new InputData { Text = Hello, my name is John Doe and I live in New York. }; 
var prediction = predictionEngine.Predict(input);

七、实际应用场景

1. 文档处理

假设我们有一个文档处理系统,需要从文档中提取人名。

制
using Microsoft.ML;
using Microsoft.ML.Data;
using System;
using System.Collections.Generic;namespace DocumentProcessingApp
{public class Document{public string Content { get; set; }}public class NamedEntity{public string Text { get; set; }public string Label { get; set; }public float Score { get; set; }}class Program{static void Main(string[] args){// 创建 MLContextvar context = new MLContext();// 加载预训练模型var modelPath = Models/ner-model.zip;var pipelineModel = context.Model.Load(modelPath, out _);// 创建预测引擎var engine = context.Transforms.Text.TokenizeIntoWords(Tokens, nameof(Document.Content)).Append(context.Transforms.Text.ApplyWordEmbeddingLookup(TokenFeatures, Tokens)).Append(context.Transforms.Concatenate(Features, TokenFeatures)).Append(context.Model.LoadTransformer(pipelineModel));var predictionEngine = context.Model.CreatePredictionEngine<Document, IEnumerable<NamedEntity>>(engine);// 输入文档内容var document = new Document { Content = The meeting will be attended by Alice Johnson and Bob Brown. };// 进行预测var predictions = predictionEngine.Predict(document);// 输出结果foreach (var entity in predictions){if (entity.Label == Person){Console.WriteLine(Person Name: + entity.Text + , Confidence: + entity.Score);}}}}
}

2. 社交媒体分析

假设我们有一个社交媒体分析系统,需要从推特或评论中提取人名。

复制
using Microsoft.ML;
using Microsoft.ML.Data;
using System;
using System.Collections.Generic;namespace SocialMediaAnalysisApp
{public class Post{public string Text { get; set; }}public class NamedEntity{public string Text { get; set; }public string Label { get; set; }public float Score { get; set; }}class Program{static void Main(string[] args){// 创建 MLContextvar context = new MLContext();// 加载预训练模型var modelPath = Models/ner-model.zip;var pipelineModel = context.Model.Load(modelPath, out _);// 创建预测引擎var engine = context.Transforms.Text.TokenizeIntoWords(Tokens, nameof(Post.Text)).Append(context.Transforms.Text.ApplyWordEmbeddingLookup(TokenFeatures, Tokens)).Append(context.Transforms.Concatenate(Features, TokenFeatures)).Append(context.Model.LoadTransformer(pipelineModel));var predictionEngine = context.Model.CreatePredictionEngine<Post, IEnumerable<NamedEntity>>(engine);// 输入帖子内容var post = new Post { Text = Jane Doe just won an award at the event with John Smith. };// 进行预测var predictions = predictionEngine.Predict(post);// 输出结果foreach (var entity in predictions){if (entity.Label == Person){Console.WriteLine(Person Name: + entity.Text + , Confidence: + entity.Score);}}}}
}

3. 日志分析

假设我们有一个日志分析系统,需要从日志文件中提取人名。

复制
using Microsoft.ML;
using Microsoft.ML.Data;
using System;
using System.Collections.Generic;namespace LogAnalysisApp
{public class LogEntry{public string Message { get; set; }}public class NamedEntity{public string Text { get; set; }public string Label { get; set; }public float Score { get; set; }}class Program{static void Main(string[] args){// 创建 MLContextvar context = new MLContext();// 加载预训练模型var modelPath = Models/ner-model.zip;var pipelineModel = context.Model.Load(modelPath, out _);// 创建预测引擎var engine = context.Transforms.Text.TokenizeIntoWords(Tokens, nameof(LogEntry.Message)).Append(context.Transforms.Text.ApplyWordEmbeddingLookup(TokenFeatures, Tokens)).Append(context.Transforms.Concatenate(Features, TokenFeatures)).Append(context.Model.LoadTransformer(pipelineModel));var predictionEngine = context.Model.CreatePredictionEngine<LogEntry, IEnumerable<NamedEntity>>(engine);// 输入日志消息var logEntry = new LogEntry { Message = Error reported by Michael Lee while accessing the system. };// 进行预测var predictions = predictionEngine.Predict(logEntry);// 输出结果foreach (var entity in predictions){if (entity.Label == Person){Console.WriteLine(Person Name: + entity.Text + , Confidence: + entity.Score);}}}}
}

八、总结

通过本文的介绍,你已经了解了利用ML.NET精准提取人名的全过程,从数据准备到模型训练,再到实际应用。ML.NET提供了强大的工具和灵活的API,使得开发者能够轻松构建和部署人名提取模型。希望这些内容对你有所帮助,让你在文本处理和自然语言处理领域更上一层楼。

往期精品推荐:

在国内默默无闻的.NET,在国外火的超乎想象?

C#的膨胀之路:创新还是灭亡

介绍.NET 6款好看的winform开源UI库

介绍一款最受欢迎的.NET 开源UI库

WPF第三方开源UI框架:打造独特体验的魔法师

WPF与Winform,你的选择是?

WinForm的前世今生

.NET成年了,然后呢?——编程界的逆袭传奇

http://www.yayakq.cn/news/21713/

相关文章:

  • 网站设计怎么边加载变查看贵州省住房城乡建设厅网站
  • 网站开发硬件需求网站建设前期规划方案
  • 中山城市建设集团网站拷问wordpress
  • 大良营销网站建设精英做网站都需要买什么软件
  • 个人网站备案 资料flash网站策划书
  • 2015帝国cms网站vue做网站的好处
  • 环球设计网站咖啡网站建设设计规划书
  • 如何做网站信息百度广告投放平台叫什么
  • 使用c#语言建设网站优点展示型网站 数据库
  • 现在开网站做微商赚钱吗做网站平台需要什么条件
  • 打开一个网站推广网址
  • 网站建设策划方北京h5网站制作
  • 建设通招标网站常州做的网站的公司网站
  • 南宁网站建设优化服务ppt里做网站效果
  • 网站开发原型工具携程旅行网官网
  • 做犯法任务的网站阿里云邮箱企业版
  • 个人备案经营网站备案实业公司网站模板
  • 网站开发 定制 合同 模板网站制作软件 aws
  • 企业网站优化服务主要围绕哪些要素百度域名登录
  • 房产网站推广方法莱芜网站优化公司
  • 网站建设销售需要懂的知识贵州网站优化
  • 想在拼购网站做产品wordpress托管平台
  • 网站如何做水晶按钮苏州企业网站建设定制
  • 做网站 先备案么宁波网站建设招商加盟
  • 高端网站案例欣赏qq推广的特点
  • 江苏外贸网站建设推广建设银行app忘记登录密码
  • 设计一个网站要多少钱上海网站开发设计
  • 唐山网站建设|唐山网站制作|公司建站666起|唐山红城网络网站前端静态模板下载
  • 如何建立自己免费网站跨界营销案例
  • 搜狗收录网站全球华设计