当前位置: 首页 > news >正文

设计教程网站做网站前台后台是怎么连接的

设计教程网站,做网站前台后台是怎么连接的,网站功能详细设计,python微信小程序开发教程给定 n 个非负整数表示每个宽度为 1 的柱子的高度图,计算按此排列的柱子,下雨之后能接多少雨水。 示例 1: 输入:height [0,1,0,2,1,0,1,3,2,1,2,1] 输出:6 解释:上面是由数组 [0,1,0,2,1,0,1,3,2,1,2,1] 表…

给定 n 个非负整数表示每个宽度为 1 的柱子的高度图,计算按此排列的柱子,下雨之后能接多少雨水。

示例 1:

输入:height = [0,1,0,2,1,0,1,3,2,1,2,1]
输出:6
解释:上面是由数组 [0,1,0,2,1,0,1,3,2,1,2,1] 表示的高度图,在这种情况下,可以接 6 个单位的雨水(蓝色部分表示雨水)。 

示例 2:

输入:height = [4,2,0,3,2,5]
输出:9

提示:

  • n == height.length
  • 1 <= n <= 2 * 104
  • 0 <= height[i] <= 105

 动态规划:

class Solution {public int trap(int[] height) {int len = height.length;// 如果数组长度为0,返回0if(len == 0){return 0;}// 创建一个数组用于存储每个位置左侧的最大高度int[] leftMax = new int[len];for(int i = 1; i < len; i++){// 更新当前点的左侧最大高度leftMax[i] = Math.max(height[i-1], height[i]);}// 创建一个数组用于存储每个位置右侧的最大高度int[] rightMax = new int[len];for(int i = len-2; i >= 0; i--){// 更新当前点的右侧最大高度rightMax[i] = Math.max(height[i], height[i+1]);}int ans = 0;// 计算每个位置能够存储的水量for(int i = 0; i < len; i++){ans += Math.min(leftMax[i], rightMax[i]) - height[i];}// 返回能够存储的总水量return ans;}
}

单调栈解决

import java.util.Stack;class Solution {public int trap(int[] height) {// 初始化总雨水量为0int totalWater = 0;// 创建一个栈用于存储数组索引Stack<Integer> stack = new Stack<>();// 遍历每个高度for (int i = 0; i < height.length; i++) {// 当栈非空且当前高度大于栈顶所指的高度时while (!stack.isEmpty() && height[i] > height[stack.peek()]) {// 取出栈顶的高度索引int top = stack.pop();// 如果栈为空,跳出循环if (stack.isEmpty()) {break;}// 计算当前柱子的宽度int distance = i - stack.peek() - 1;// 计算能形成的水位高度差int boundedHeight = Math.min(height[i], height[stack.peek()]) - height[top];// 计算当前能积的水量并加到总水量中totalWater += distance * boundedHeight;}// 将当前索引入栈stack.push(i);}// 返回总雨水量return totalWater;}
}

工作原理

  1. 单调递减栈:栈中存储的是高度数组的索引。栈内元素对应的高度从栈底到栈顶是非递增的。
  2. 遍历高度数组:对于每一个高度,若其大于栈顶元素所指的高度(即找到一个可能的凹槽),则计算当前凹槽的水量。
  3. 水量计算
    • 宽度:凹槽宽度为当前索引 i 与栈顶下一个元素的索引之差再减去 1。
    • 高度:水位高度差为 min(当前高度, 栈顶下一个高度) - 栈顶高度
  4. 累加水量:将计算出的水量累加到总水量中。

在计算接雨水的过程中,水的高度取决于柱子之间的最低高度。具体来说,水只能被较矮的柱子挡住。因此,关键在于找到最低的柱子,并根据它来计算可能存储的水量。

class Solution {public int trap(int[] height) {int len=height.length;int left=0,right=len-1;int leftMax=0,rightMax=0;int ans=0;while(left<=right){leftMax=Math.max(leftMax,height[left]);rightMax=Math.max(rightMax,height[right]);if(height[left]<height[right]){ans+=leftMax-height[left];left++;}else{ans +=rightMax-height[right];right--;}}return ans;}
}

判断逻辑

  1. 水量计算基础

    • 对于 height[left] < height[right] 的情况,由于 leftMax 是从左侧移动过程中遇到的最大高度,而 rightMax 是从右侧移动过程中遇到的最大高度,因此:
      • 当前柱子 height[left] 左侧的最大高度 leftMax 是可靠的。
      • 但是,右侧的最大高度 rightMax 还可能会更新。因此,此时计算 left 位置的积水量是安全的。
  2. 为什么选择较小的高度

    • 如果 height[left] < height[right],意味着在当前位置 left,其右侧有更高的柱子。这个较高的柱子可以帮助挡住雨水。因此可以确定 leftMax 是最小的限制条件,用它来计算当前位置可能存储的水量是安全的。
    • 如果 height[left] >= height[right],那么右侧柱子在此时成为决定因素,左侧的 leftMax 没有影响,应该通过 rightMax 计算右侧的水量。

例子说明

假设 height[left] = 2height[right] = 5

  • left 侧低于 right:可以确定在左侧 left 柱子能容纳的水量只取决于 leftMax。因此,将 left 向右移动并计算 leftMax - height[left]

  • 如果反过来:如果左侧高于或等于右侧,则右侧可能会积水,因此移动 right 向左并计算 rightMax - height[right]

总结

这一判断的核心在于:

  • 小于:左侧可能有积水,计算左侧。
  • 大于等于:右侧可能有积水,计算右侧。

初始状态下的 right 指针

  • right 指针初始位置:它从数组的最右端开始。
  • left 指针初始位置:它从数组的最左端开始。

初始比较:height[left] < height[right]

在算法的开始阶段,我们用 height[left] < height[right] 来判断接下来的行动。虽然 right 一开始位于数组的最右边,但这并不影响算法的正确性,原因如下:

  1. rightMax 的初始化

    • 初始时,rightMax 会等于 height[right]。因为 right 指针在最右端,所以 rightMax 一开始就是数组最右边的那个高度。
    • 随着 right 指针向左移动,rightMax 会逐渐更新为更大的值,直到遍历完所有右边的柱子。
  2. 初始状态的判断

    • 在开始时,算法将 leftright 的柱子高度进行比较。
    • 如果 height[left] < height[right],说明左边的柱子比右边矮。在这种情况下,右边更高的柱子可以“挡住”水,因此左边柱子上方可能会有积水,这时候左边的积水高度是可以确定的,所以移动 left 指针并计算水量。
    • 如果 height[left] >= height[right],算法会移动 right 指针。此时,不会计算 left 指针位置的积水,而是继续查看右边的柱子是否可能形成积水。
  3. 意义在于确定安全的水量

    • 通过比较 height[left]height[right],算法确保了在当前位置计算水量时,有足够的信息保证水量是准确的。
    • rightMaxleftMax 在算法执行过程中不断更新,确保算法总是在安全的条件下进行计算。

实际意义

即使 right 指针最开始位于最右边,这个初始比较也有意义,因为它为整个算法奠定了基础。我们可以通过这个初始比较,确保在移动 leftright 指针时,计算的积水量是正确且安全的。

举个例子

假设 height 数组为 [1, 0, 2, 1, 0, 1, 3]leftright 初始分别在位置 06

  • left 开始为 1right 开始为 3
  • 第一次比较时,height[left] = 1height[right] = 3,显然 1 < 3,我们可以放心地移动 left 指针,因为左边的积水高度确定不会超过 leftMax

总之,这一步比较对于算法的正确性和水量计算至关重要,即使 right 指针最初处于最右边,也依然有效且必要。

http://www.yayakq.cn/news/683883/

相关文章:

  • 海城网站制作建设贵阳制作网站
  • 天津建设银行网站wordpress任意文件删除漏洞
  • 链接购买seo搜索引擎优化技术
  • 全屏家居网站模板网站建设找推推蛙
  • 医疗网站建设行业现状做视频网站带宽不够怎么办
  • 免费网站服务器手机端的网站怎么做
  • 中学生设计的网站自己找厂家做代理卖货
  • 淘宝客自己做网站吗湖州建设公司网站
  • 网站页面设计考虑要素如皋做网站公司
  • 青岛 两学一做 网站wordpress dux 1.6
  • 什么做的网站推广wordpress 建站 视频 百度云
  • 全站仪快速建站淮安建设工程协会网站查询
  • 外包app制作费用多少引擎优化搜索
  • 中石化两学一做网站购物网站建设与实现
  • 仿 手机 网站模板html电商直播app开发
  • 可以做ppt的网站威海做网站
  • 百度首页网站推广多少钱一年无为县住房建设局网站
  • 网站模版如何去除title版权信息东莞网站建设排名 南城
  • 南昌做网站建设哪家好如何做电商网站视频
  • 网站建设后帐号密码初中学历可以学室内设计吗
  • 重庆网上商城网站建设wordpress程序员主题
  • 公司网站制作费用多少wordpress禁止必应访问
  • 宁波网站推广营销分析网站建设到运营需要多少钱
  • 做车展招商的网站软件开发的模式
  • 建站公司做的网站侵权了wordpress服务器要求
  • 青岛建手机网站公司百度指数数据分析平台
  • 怎么查网站后台地址网站建设技术网站
  • 网站建设需求文档下载自己做彩票网站吗
  • 网站开发及维护合同范本网站系统规划报告
  • 做外贸怎样打开国外网站网站设计专业公司