当前位置: 首页 > news >正文

泰安专业网站开发公司wordpress 多层边栏

泰安专业网站开发公司,wordpress 多层边栏,建e网官方网站,呼和浩特重大消息文章目录 前言一、计算思路二、代码三、结果 前言 本本篇博客介绍一种非常简单粗暴的方法,做到跨相机像素匹配。已知各相机内外参,计算共视区域像素投影(不需要计算图像特征)。废话不多说,直接来,见下图。…

文章目录

    • 前言
    • 一、计算思路
    • 二、代码
    • 三、结果

前言

  1. 本篇博客介绍一种非常简单粗暴的方法,做到跨相机像素匹配。
  2. 已知各相机内外参,计算共视区域像素投影(不需要计算图像特征)。废话不多说,直接来,见下图。

同一时刻相机A与相机B的图

相机A

在这里插入图片描述

相机B

在这里插入图片描述

问:相机 A 检测出目标1 box位置,如何计算得出目标1在相机 B 中像素的位置?

在这里插入图片描述


一、计算思路

  1. 取相机 A 目标1中一个像素点 (Ua, Va)
  2. 计算改点在相机A中的相机坐标系坐标 (Xa,Ya,Za)
  3. 相机 A 坐标转化到相机 B 下的相机坐标 (Xb,Yb,Zb)
  4. (Xb,Yb,Zb) 转化到像素坐标 (Ub,Vb)

第2点与第3点中像素坐标转化到相机坐标。

在这里插入图片描述

其中Zcamera 可以近似求出。看过之前博客的朋友应该可以明白,具体计算方式,代码会全部给出。

第3点就是一个三维坐标系旋转平移变化。

在这里插入图片描述

二、代码

import yaml
import numpy as np
import cv2def read_yaml(path):with open(path, 'r', encoding='utf-8') as f:result = yaml.load(f.read(), Loader=yaml.FullLoader)return resultdef get_r_t_mtx(path, f_r_b_l):sensor_list = ["front_center", "right_center", "back_center", "left_center"]yaml_result = read_yaml(path)  # 读取yaml配置文件hres_pitch = yaml_result[sensor_list[f_r_b_l]]["pitch"]res_h = yaml_result[sensor_list[f_r_b_l]]["height"]res_r = np.array(yaml_result[sensor_list[f_r_b_l]]["rotation"]).reshape(3, 3)res_t = np.array(yaml_result[sensor_list[f_r_b_l]]["translation"]).reshape(3, 1)res_mtx = np.array(yaml_result[sensor_list[f_r_b_l]]["K"]).reshape(3, 3)return res_pitch, res_h, res_mtx, res_r, res_t# 近似计算相机坐标系 Zcamera
def get_camera_z(children, pixe_y):pitch, h, K, *_ = childrensigma = np.arctan((pixe_y - K[1][2]) / K[1][1])z = h * np.cos(sigma) / np.sin(sigma + pitch)  # 深度return zdef get_sensor_pixe(children, parent, x, y, distance):r, t = get_two_camera_r_t(children, parent)children_pitch, children_h, children_mtx, *c = childrenparent_pitch, parent_h, parent_mtx, *p = parentdistance_init = distancex = (x - children_mtx[0][2]) / children_mtx[0][0]y = (y - children_mtx[1][2]) / children_mtx[1][1]coor = np.array([x, y, 1]).reshape(3, 1) * distance_initres_coor = r @ coor + t  # 车体坐标系res_x = (res_coor[0] / res_coor[2]) * parent_mtx[0][0] + parent_mtx[0][2]res_y = (res_coor[1] / res_coor[2]) * parent_mtx[1][1] + parent_mtx[1][2]return res_x, res_ydef show_img(img):cv2.namedWindow("show")cv2.imshow("show", img)cv2.waitKey(0)def get_two_camera_r_t(children, parent):*children, children_mtx, children_r, children_t = children*parent, parent_mtx, parent_r, parent_t = parentres_r = np.array(parent_r).T @ np.array(children_r)res_t = np.array(parent_r).T @ (np.array(children_t) - np.array(parent_t)).reshape(3, 1)return res_r, res_tdef get_uv(point, param):*p, mtx, r, t = paramcoor_camera = r.T @ (np.array(point).reshape(3, 1) - t)coor_pixe = mtx @ coor_camera * (1 / coor_camera[2])return coor_pixe[0][0], coor_pixe[1][0]if __name__ == '__main__':front_img = cv2.imread("front_img.jpg")left_img = cv2.imread("left_img.jpg")img = np.concatenate((left_img, front_img), axis=1)  # 横向拼接front_param = get_r_t_mtx("./sensor_param.yaml", 0)left_param = get_r_t_mtx("./sensor_param.yaml", 3)color = np.random.randint(0, 255, (3000, 3))  # 随机颜色car_coor = [5.41, 6.5, 1.3]camera1 = np.ravel(get_uv(car_coor, left_param))camera2 = np.ravel(get_uv(car_coor, front_param))print(camera1, camera2)cv2.circle(img, (int(camera1[0]), int(camera1[1])), 1, color[0].tolist(), 2)cv2.circle(img, (int(camera2[0]) + 1920, int(camera2[1])), 1, color[1].tolist(), 2)cv2.line(img, (int(camera1[0]), int(camera1[1])), (int(camera2[0] + 1920), int(camera2[1])), color[0].tolist(), 2)show_img(img)# print(get_two_camera_r_t(front_param, left_param))# print(front_to_left_r.reshape(-1), "\n", front_to_left_t)# distance = get_camera_z(left_param, 640)# x1, y1 = 1429, 488# x2, y2 = 1509, 637# for x in range(x1, x2, 20):#     for y in range(y1, y2, 20):#         res_x, res_y = get_sensor_pixe(left_param, front_param, x, y, distance)#         cv2.circle(img, (int(x), int(y)), 1, color[x].tolist(), 5)#         cv2.circle(img, (int(res_x) + 1920, int(res_y)), 1, color[x].tolist(), 5)# cv2.line(img, (int(x) , int(y)), (int(res_x)+ 1920, int(res_y)), color[x].tolist(), 2)# distance = get_camera_z(front_param, 649)# x1, y1 = 271, 469# x2, y2 = 353, 649# for x in range(x1, x2, 20):#     for y in range(y1, y2, 20):#         res_x, res_y = get_sensor_pixe(front_param, left_param, x, y, distance)#         cv2.circle(img, (int(x) + 1920, int(y)), 1, color[x].tolist(), 2)#         cv2.circle(img, (int(res_x), int(res_y)), 1, color[x].tolist(), 2)# cv2.line(img, (int(x) + 1920, int(y)), (int(res_x), int(res_y)), color[x].tolist(), 2)# show_img(img)

三、结果

在这里插入图片描述

http://www.yayakq.cn/news/276338/

相关文章:

  • 网站 相对路径做的网站没法用能否拒绝付工资
  • 企业网站打不开什么原因html什么意思
  • 网站添加google地图汽车网站建设预算
  • 企业网站设计需求文档沈阳市建网站
  • 领地免费网站程序汇编语言做网站
  • flask做网站工具昆明工程建设信息网站
  • 大型门户网站建设美丽揭阳seo网站管理
  • 开发商城网站开发模板网站的域名是什么
  • 贵州省建设银行网站如何开发自己的软件
  • 新竹网站凡客家具质量怎么样
  • 建设网站如何给页面命名免费的手机网站模板
  • 学校户网站建设方案鸿星尔克的网络营销方式
  • 网站 换图片可信网站认证图标
  • 网站管理强化阵地建设手机网站cms系统
  • 宁波江北区网站推广联系方式成crm网
  • 酒店网站的设计摘要视频链接生成器
  • 培训型网站建设重庆建设公司排名
  • 电子商务网站建设和推广论文苏宁易购官网商城
  • 官网建站模板库seo 论坛
  • 可信网站值得做吗wordpress广告插件汉化
  • 提供常州微信网站建设app开发公司的管理体系
  • 开源的网站系统医院图书馆网站建设的意义
  • 企业品牌网站建设怎么做许昌网站建设哪家最好
  • 网站开发团队如何接活江西赣州
  • 厦门律师网站建设做网站价格多少钱
  • 网站站长登录方式陕西省建设部官方网站
  • 苏州建设建设信息网站网站开发工作量
  • 辽宁模板网站建设公司自己在家开网店怎么开
  • 站长源码wordpress 图片缩略图不显示图片
  • vue做网站的好处是什么在盐城做网站的网络公司电话