当前位置: 首页 > news >正文

公司网站上面的动画怎么做服务器可以做自己网站用吗

公司网站上面的动画怎么做,服务器可以做自己网站用吗,做网站模版,新乡做网站推广文章目录 1、简介2、门控机制3、公式4、图解GRU4.1、重置门和更新门4.2、候选隐藏状态和隐藏状态⭐ 5、LSTM与GRU的对比6、应用7、训练技巧 🍃作者介绍:双非本科大三网络工程专业在读,阿里云专家博主,专注于Java领域学习&#xff…

文章目录

  • 1、简介
  • 2、门控机制
  • 3、公式
  • 4、图解GRU
    • 4.1、重置门和更新门
    • 4.2、候选隐藏状态和隐藏状态⭐
  • 5、LSTM与GRU的对比
  • 6、应用
  • 7、训练技巧

🍃作者介绍:双非本科大三网络工程专业在读,阿里云专家博主,专注于Java领域学习,擅长web应用开发、数据结构和算法,初步涉猎人工智能和前端开发。
🦅个人主页:@逐梦苍穹
📕所属专栏:人工智能
🌻gitee地址:xzl的人工智能代码仓库
✈ 您的一键三连,是我创作的最大动力🌹

1、简介

GRU:Gated Recurrent Unit

可以先复习一下之前的内容:

循环神经网络RNN:https://xzl-tech.blog.csdn.net/article/details/140940642
LSTM:https://xzl-tech.blog.csdn.net/article/details/140940759

概念:
GRU是另一种RNN变体,它简化了LSTM的结构,减少了计算复杂度,同时保持了处理长时依赖的能力。
结构:
image.png
GRU将LSTM的输入门和遗忘门合并为一个 更新门(Update Gate),并用一个 重置门(Reset Gate) 来决定隐藏状态如何结合新输入。

2、门控机制

  1. 门控机制的基本思想是使用“门”来控制信息在网络中的流动。
  2. 每个门都是通过神经网络层计算出来的权重向量,其值通常在 0到1之间
  3. 不同的门在不同 时间步 上控制信息的选择、遗忘和更新。
  4. 这些门是通过可学习的参数在训练过程中自动调整的。

3、公式

GRU在每个时间步的更新过程可以用以下公式描述:

  1. 更新门 z t = σ ( W z ⋅ [ h t − 1 , x t ] + b z ) z_t = \sigma(W_z \cdot [h_{t-1}, x_t]+b_z) zt=σ(Wz[ht1,xt]+bz)
    • z t z_t zt 表示更新门的输出。
  2. 重置门 r t = σ ( W r ⋅ [ h t − 1 , x t ] + b r ) r_t = \sigma(W_r \cdot [h_{t-1}, x_t]+b_r) rt=σ(Wr[ht1,xt]+br)
    • r t r_t rt 表示重置门的输出。
  3. 候选隐藏状态 h ~ t = tanh ⁡ ( W h ⋅ [ r t ∗ h t − 1 , x t ] ) \tilde{h}_t = \tanh(W_h \cdot [r_t \ast h_{t-1}, x_t]) h~t=tanh(Wh[rtht1,xt])
    • h ~ t \tilde{h}_t h~t 表示候选的隐藏状态。
  4. 隐藏状态更新 h t = ( 1 − z t ) ∗ h t − 1 + z t ∗ h ~ t h_t = (1 - z_t) \ast h_{t-1} + z_t \ast \tilde{h}_t ht=(1zt)ht1+zth~t
    • h t h_t ht 是当前时间步的隐藏状态。

回顾一下 tanh函数 f ( x ) = 1 − e − 2 x 1 + e − 2 x f(x) = \frac{1 - e^{-2x}}{1 + e^{-2x}} f(x)=1+e2x1e2x

4、图解GRU

4.1、重置门和更新门

GRU实际上影藏了记忆链条 h t h_t ht
image.png
重置门的作用跟之前的遗忘门类似,都是充当橡皮擦的作用:
image.png
更新门则是筛选新的记忆:
image.png

4.2、候选隐藏状态和隐藏状态⭐

候选隐藏状态则是在前一时刻隐藏状态之上,擦除了一定记忆之后,融合进当前的输入 x t x_t xt,然后经过tanh函数临时记录下来:
image.png
更新门在当前的候选隐状态 h ~ t \tilde{h}_t h~t和前一时刻的候选隐状态 h ~ t − 1 \tilde{h}_{t-1} h~t1之间取舍,组合之后输出当前的隐藏状态 h t h_t ht,然后网络进行更新,即融入了原有的"记忆"中,相当于阅后即焚:
image.png
经过这样不断的模块迭代,就是一直在短期记忆和长期记忆之间融合更新,而且存储的信息不需要像LSTM那么多,更加简单高效:
image.png

5、LSTM与GRU的对比

  1. 复杂性
    • LSTM更复杂,参数更多。
    • GRU较为简洁,参数更少,训练速度更快。
  2. 性能
    • 两者在处理长时依赖性任务时表现都很优异,具体选择往往取决于数据集和计算资源。
    • 在一些特定任务和数据集上,GRU可能比LSTM表现更好,尤其是在计算资源有限的情况下。
  3. 使用场景
    • 对于需要更强的长期记忆和复杂信息流动的任务,LSTM可能更合适。
    • 对于实时性要求较高或者模型简单性要求较高的任务,GRU可能更具优势。

LSTM和GRU是两种非常成功的RNN变体,通过改进信息传递机制,有效解决了传统RNN在处理长序列数据时的局限性。
它们在自然语言处理、语音识别和时间序列预测等领域得到广泛应用。

6、应用

RNN及其变体广泛应用于以下领域:

  • 自然语言处理:如语言模型、机器翻译和文本生成。
  • 语音识别:将音频序列转换为文本。
  • 时间序列预测:如股票价格预测和天气预报。
  • 视频分析:从视频帧中提取时间信息。

7、训练技巧

  • 梯度裁剪:限制梯度的大小以防止梯度爆炸。
  • 正则化:使用Dropout等技术防止过拟合。
  • 预训练和转移学习:利用大规模预训练模型微调特定任务。

RNN模型在序列数据处理中具有强大的表现力和适应能力,但也面临一些挑战。通过使用LSTM、GRU等改进模型,结合适当的训练技巧,能够有效地应用于各种实际问题。

http://www.yayakq.cn/news/959160/

相关文章:

  • 精密模具东莞网站建设有了域名和空间怎么建网站
  • 学校网站建设目的是什么意思电脑网站加速器
  • 杭州模板建站哪家好企业服务行业
  • 厦门高端网站建设公司品牌网站建设 2蝌蚪小
  • 有赞做网站网页设计颜色搭配
  • 南昌做网站价格建筑网格布搭接
  • 能赚钱的网站常州知名网站建设公司
  • 马鞍山网站建设兼职短链接在线生成器免费版
  • 苏州网站建设公司哪个好简单的响应式网页
  • 郑州建材公司网站建设视频网站直播怎么做
  • 网站注册怎么做苏州网站开发建设公司
  • 设计名字的网站p2p网站开发 源代码
  • 深圳做微商网站留学中介网站建设方案
  • 网站图片不是本站的对seo有什么不好wordpress 360急速模式打不开
  • 股票网站怎么做动态ip怎么建设网站
  • 珠海网站关键词推广商务网站建设目的
  • 怎么做点击图片进入网站苏州公司
  • 怎么做加密货币网站淄博手机网站
  • 比选三家网站建设公司自学做蛋糕的网站
  • 做网站的最大的挑战是什么浦项建设内部网站
  • 网站推广的基本方法游戏代理0加盟费
  • 手机把网站做成软件有哪些成都最好的网站建设
  • 有机蔬菜网站是如何建设wordpress控制上下页链接
  • 怎么创造网站网站建设改革情况汇报
  • 有什么做外贸的网站学做软件的网站有哪些内容
  • 建湖做网站需要多少钱赣州广播电视台
  • 电子网站建设方案哈尔滨市建设工程交易中心
  • 这样制作公司网站wordpress 软件下载
  • 商城类网站功能建网站有什么要求
  • 甘肃建设项目审批权限网站邵阳做网站公司