当前位置: 首页 > news >正文

网网站建设公司注册完域名后如何做网站

网网站建设公司,注册完域名后如何做网站,定制网站开发接活,北京品牌网站文章目录拉格朗日方程推导方程组微分方程算法化求解画图动图绘制温馨提示,只想看图的画直接跳到最后一节拉格朗日方程 此前所做的一切三体和太阳系的动画,都是基于牛顿力学的,而且直接对微分进行差分化,从而精度非常感人&#xf…

文章目录

    • 拉格朗日方程
    • 推导方程组
    • 微分方程算法化
    • 求解+画图
    • 动图绘制

温馨提示,只想看图的画直接跳到最后一节

拉格朗日方程

此前所做的一切三体和太阳系的动画,都是基于牛顿力学的,而且直接对微分进行差分化,从而精度非常感人,用不了几年就得撞一起去。

为了给三体人提供一个更加有价值的推导,这次通过求解拉格朗日方程的数值解来实现。

首先假设三个质点的质量分别为m1,m2,m3m_1, m_2, m_3m1,m2,m3,坐标为x⃗1,x⃗2,x⃗3\vec x_1, \vec x_2, \vec x_3x1,x2,x3,质点速度可以表示为x⃗˙\dot{\vec x}x˙。假设三体在二维平面上运动,则第iii个质点的动能为

Ti=12mi(x˙i2+y˙i2)T_i=\frac{1}{2}m_i(\dot x_i^2+\dot y_i^2) Ti=21mi(x˙i2+y˙i2)

引力势能为−Gmimjrij-G\frac{m_im_j}{r_{ij}}Grijmimj,其中GGG为万有引力常量,rijr_{ij}rij为质点i,ji,ji,j之间的距离,则系统的拉格朗日量为

L=∑i12mi(x˙i2+y˙i2)−∑i≠jGmimj∥x⃗i−x⃗j∥L=\sum_i\frac{1}{2}m_i(\dot x_i^2+\dot y_i^2)-\sum_{i\not=j}G\frac{m_im_j}{\Vert\vec x_i-\vec x_j\Vert} L=i21mi(x˙i2+y˙i2)i=jGxixjmimj

有了拉格朗日量,将其带入拉格朗日方程

ddt∂L∂x˙i−∂L∂xi=0\frac{\text d}{\text dt}\frac{\partial L}{\partial\dot x_i}-\frac{\partial L}{\partial x_i}=0 dtdx˙iLxiL=0

就可以得到拉格朗日方程组。

推导方程组

对于三体系统而言,总计有3个粒子,每个粒子有x,yx,yx,y两个自由度,也就是说最后会得到6组方程。考虑到公式推导过程中可能会出现错误,所以下面采用sympy来进行公式推导。

首先定义符号变量

from sympy import symbols
from sympy.physics.mechanics import dynamicsymbols
m = symbols('m1:4')
x = dynamicsymbols('x1:4')
y = dynamicsymbols('y1:4')

接下来,需要构造系统的拉格朗日量LLL,其实质是系统的动能减去势能,对于上面构建的三体系统而言,动能和势能可分别表示为

计算每个质点的动能和势能。动能是由速度决定的,而速度是由位置对时间的导数决定的。我们可以用 sympy 的 diff 函数来求导:

from sympy import diff
# 此为速度的平方
v2 = [diff(x[i],t)**2 + diff(y[i])**2 for i in range(3)]
T = 0
for i in range(3):T += m[i]*v2[i]/2

势能是由万有引力决定的,而万有引力是由两个质点之间的距离决定的。我们可以用 sympy 的 sqrt 函数来求距离:

from sympy import sqrt,cos
G = symbols('G') # 引力常数
ijs = [(0,1), (0,2),(1,2)]
dij = [sqrt((x[i]-x[j])**2+(y[i]-y[j])**2) for i,j in ijs]
U = 0
for k in range(3):i,j = ijs[k]U -= G*m[i]*m[j]/dij[k]

有了动能和势能,就可以愉快地求拉格朗日量了,有了拉格朗日量,就可以列拉格朗日方程了

L=T−UdLdxi−ddt∂L∂x˙iL = T - U\\ \frac{\text dL}{\text dx_i}-\frac{\text d}{\text dt}\frac{\partial L}{\partial \dot x_i} L=TUdxidLdtdx˙iL

三个粒子的每一个坐标维度,都可以列出一组拉格朗日方程,所以总共有6个拉格朗日方程组

from sympy import solve
L = T - U
eqLag = lambda x : diff(L, x)-diff(diff(L, diff(x, t)), t)
# 拉格朗日方程组
eqs = [eqLag(xi) for xi in x+y]

xij=xi−xj,yij=yi−yjx_{ij}=x_i-x_j, y_{ij}=y_i-y_jxij=xixj,yij=yiyj,则

−Gm1m2x12(x122+y122)32+−Gm1m3x13(x132+y132)32−m1d2dt2x1=0Gm1m2x12(x122+y122)32+−Gm2m3x23(x232+y232)32−m2d2dt2x2=0Gm1m3x13(x132+y132)32+Gm2m3x23(x232+y232)32−m3d2dt2x3=0−Gm1m2y12(x122+y122)32+−Gm1m3y13(x132+y132)32−m1d2dt2y1=0Gm1m2y12(x122+y122)32+−Gm2m3y23(x232+y232)32−m2d2dt2y2=0Gm1m3y13(x132+y132)32+Gm2m3y23(x232+y232)32−m3d2dt2y3=0\frac{-G m_1 m_2x_{12}}{\left(x_{12}^{2} + y_{12}^{2}\right)^{\frac{3}{2}}} + \frac{-G m_1 m_{3}x_{13}}{\left(x_{13}^{2} + y_{13}^{2}\right)^{\frac{3}{2}}} - m_1 \frac{d^{2}}{d t^2} x_1=0\\ \frac{G m_1 m_2 x_{12}}{\left(x_{12}^{2} + y_{12}^{2}\right)^{\frac{3}{2}}} + \frac{-G m_2 m_{3}x_{23}}{\left(x_{23}^{2} + y_{23}^{2}\right)^{\frac{3}{2}}} - m_2 \frac{d^{2}}{d t^2} x_2=0\\ \frac{G m_1 m_{3} x_{13}}{\left(x_{13}^{2} + y_{13}^{2}\right)^{\frac{3}{2}}} + \frac{G m_2 m_{3} x_{23}}{\left(x_{23}^{2} + y_{23}^{2}\right)^{\frac{3}{2}}} - m_{3} \frac{d^{2}}{d t^2} x_{3}=0\\ \frac{-G m_1 m_2 y_{12}}{\left(x_{12}^{2} + y_{12}^{2}\right)^{\frac{3}{2}}} + \frac{-G m_1 m_{3} y_{13}}{\left(x_{13}^{2} + y_{13}^{2}\right)^{\frac{3}{2}}} - m_1 \frac{d^{2}}{d t^2} y_1=0\\ \frac{G m_1 m_2 y_{12}}{\left(x_{12}^{2} + y_{12}^{2}\right)^{\frac{3}{2}}} + \frac{-G m_2 m_{3}y_{23}}{\left(x_{23}^{2} + y_{23}^{2}\right)^{\frac{3}{2}}} - m_2 \frac{d^{2}}{d t^2} y_2=0\\ \frac{G m_1 m_{3} y_{13}}{\left(x_{13}^{2} + y_{13}^{2}\right)^{\frac{3}{2}}} + \frac{G m_2 m_{3} y_{23}}{\left(x_{23}^{2} + y_{23}^{2}\right)^{\frac{3}{2}}} - m_{3} \frac{d^{2}}{d t^2} y_{3}=0\\ (x122+y122)23Gm1m2x12+(x132+y132)23Gm1m3x13m1dt2d2x1=0(x122+y122)23Gm1m2x12+(x232+y232)23Gm2m3x23m2dt2d2x2=0(x132+y132)23Gm1m3x13+(x232+y232)23Gm2m3x23m3dt2d2x3=0(x122+y122)23Gm1m2y12+(x132+y132)23Gm1m3y13m1dt2d2y1=0(x122+y122)23Gm1m2y12+(x232+y232)23Gm2m3y23m2dt2d2y2=0(x132+y132)23Gm1m3y13+(x232+y232)23Gm2m3y23m3dt2d2y3=0

微分方程算法化

接下来就要调用Python的odeint来计算这个微分方程组的数值解,odeint的调用方法大致为odeint(func, y, t, args),其中func是一个函数,这个函数必须为func(y,t,...),且返回值为dydt\frac{\text dy}{\text dt}dtdy

为此,需要将上述方程组再行拆分,以消去其中的二次导数,以x1x_1x1为例,令u1=dx1dtu_1=\frac{\text dx_1}{\text dt}u1=dtdx1,则此方程变为方程组

x˙1(t)=u1(t)u˙1(t)=−Gm1m2x12(x122+y122)32+−Gm1m3x13(x132+y132)32\begin{aligned} \dot x_1(t)&=u_1(t)\\ \dot u_1(t)&= \frac{-G m_1 m_2x_{12}}{\left(x_{12}^{2} + y_{12}^{2}\right)^{\frac{3}{2}}} + \frac{-G m_1 m_{3}x_{13}}{\left(x_{13}^{2} + y_{13}^{2}\right)^{\frac{3}{2}}}\\ \end{aligned} x˙1(t)u˙1(t)=u1(t)=(x122+y122)23Gm1m2x12+(x132+y132)23Gm1m3x13

由于三体系统中有3个粒子,共6个独立变量,所以要列12个方程。记u(t)=textdxdt,v(t)=dydtu(t)=\frac{text dx}{\text dt}, v(t)=\frac{\text dy}{\text dt}u(t)=dttextdx,v(t)=dtdy,则odeint输入的y的形式为

[x1,x2,x3,y1,y2,y3,u1,u2,u3,v1,v2,v3][x_1, x_2, x_3, y_1, y_2, y_3, u_1, u_2, u_3, v_1, v_2, v_3] [x1,x2,x3,y1,y2,y3,u1,u2,u3,v1,v2,v3]

从而func的具体形式为

import numpy as np
dxy = lambda x,y : np.sqrt(x**2+y**2)**(3/2)
def triSys(Y, t, m, G):jk = [(1,2),(0,2),(0,1)]x,y = Y[:3], Y[3:6]u,v = Y[6:9], Y[9:]du, dv = [], []for i in range(3):j, k = jk[i]xji, xki = x[j]-x[i], x[k]-x[i]yji, yki = y[j]-y[i], y[k]-y[i]dji, dki = dxy(xji, yji), dxy(yji, yki)mji, mki = G*m[i]*m[j], G*m[i]*m[k]du.append(mji*xji/dji + mki*xki/dki)dv.append(mji*yji/dji + mki*yki/dki)dydt = [*u, *v, *du, *dv]return dydt

求解+画图

接下来就是见证奇迹的时刻,首先创建一个随机的起点,作为三体运动的初值,然后带入开整就完事儿了

from scipy.integrate import odeint
np.random.seed(42)
y0 = np.random.rand(12)
m = np.random.rand(3)
t = np.linspace(0, 20, 1001)
sol = odeint(triSys, y0, t, args=(m, 1))

然后绘制一下这三颗星的轨迹

import matplotlib.pyplot as plt
plt.plot(sol[:,0], sol[:,3])
plt.plot(sol[:,1], sol[:,4])
plt.plot(sol[:,2], sol[:,5])
plt.show()

在这里插入图片描述

光是看这个轨迹就十分惊险了有木有。

如果把其中的第一颗星作为坐标原点,那么另外两颗星的轨迹大致为

plt.plot(sol[:,1]-sol[:,0], sol[:,4]-sol[:,3])
plt.plot(sol[:,2]-sol[:,0], sol[:,5]-sol[:,3])
plt.scatter([0],[0], c='g', marker='*')
plt.show()

结果为

在这里插入图片描述

动图绘制

最后,以中间这颗星为原点,绘制一下另外两颗星运动的动态过程

import matplotlib.animation as animation fig = plt.figure(figsize=(9,4))
ax = fig.add_subplot(xlim=(-1.8,1.8),ylim=(-1.8,1.5))
ax.grid()traces = [ax.plot([],[],'-',lw=0.5)[0] for _ in range(2)]
pts = [ax.plot([],[] ,marker='*')[0] for _ in range(2)]
ax.plot([0],[0], marker="*", c='r')X1 = sol[:,1]-sol[:,0]
Y1 = sol[:,4]-sol[:,3]
X2 = sol[:,2]-sol[:,0]
Y2 = sol[:,5]-sol[:,3]def animate(n):traces[0].set_data(X1[:n], Y1[:n])traces[1].set_data(X2[:n], Y2[:n])pts[0].set_data([X1[n], Y1[n]])pts[1].set_data([X2[n], Y2[n]])return traces + ptsani = animation.FuncAnimation(fig, animate, range(1000), interval=10, blit=True)
ani.save('tri.gif')

在这里插入图片描述

http://www.yayakq.cn/news/136241/

相关文章:

  • 铁路网站建设论文德州做网站的公司
  • 做seo优化产品网站管理咨询公司起名大气上口的
  • 营销企业网站建设安徽省建设质量安全协会网站
  • 商标设计公司排名前十强网站优化做些什么
  • 如何做网站规划手机网站主页
  • 网站运营seo长安营销服务协同管理平台网站
  • 个人适合建什么网站网站搜索引擎推广
  • 建站程序下载wordpress 的主题修改
  • 网站开发 科技注册公司注册资金最低多少钱
  • 巴中网站建设有限公司网站模板 小说
  • 上海做网站设计的公司360社区app
  • 合肥建设网站公司wordpress标题调用标签
  • 江西网站制作的公司软件开发培训教程
  • 怎么建设可以收费的网站网站一般用什么工具做
  • 哪个公司做网站好网站不让百度收录
  • html5网站特效wordpress 仿站
  • 网站建设网页制作教程wordpress暴力
  • 怎么做自己的购物网站seo排名官网
  • jsp网站开发参考文献仿照别人的网站做违法吗
  • wordpress 常用小工具怎样做seo网站推广
  • 西安咪豆网站建设公司英文外贸发布网站
  • 沈阳网站建设联系方式网站建设公司广告词
  • 上海长宁建设和交通门户网站龙华区城市建设局网站
  • 公众号免费素材网站聚名网页版
  • 宿迁网站建设宿迁官网定制
  • 简单的网站注册流程图如何建立游戏网站
  • 有个专门做装修的网站河津北京网站建设
  • 装饰网站建设重要性企业图标设计图案大全
  • 徐州做网站最好的公司品牌营销案例
  • 青岛专业网站设计的公司网站制作和推广lv官网