当前位置: 首页 > news >正文

iis7建网站东莞网页建设网站

iis7建网站,东莞网页建设网站,楼盘网,一哥优购物官方网站目录 前言 一、讲在前面 1.多元_血压.csv: 2.完整代码: 3.运行结果: 二、实现步骤 1.导入库 2.导入数据 3.绘制散点图(这步可以省略) ​编辑 4.求特征和标签的相关系数 5.建立并训练线性回归模型 6.检验模…

目录

前言

一、讲在前面

1.多元_血压.csv:

2.完整代码:

3.运行结果:

二、实现步骤

1.导入库

2.导入数据

3.绘制散点图(这步可以省略)

​编辑

4.求特征和标签的相关系数

5.建立并训练线性回归模型

6.检验模型

7.获取线性回归模型方程

8.利用模型进行预测

总结


前言

        线性回归是一种基本的回归分析方法,用于建模两个或多个变量之间的关系。其主要目标是通过一条直线(在简单线性回归中)或一个超平面(在多元线性回归中)来预测一个目标变量的值。

 

一、讲在前面

1.多元_血压.csv:

 

2.完整代码:

# 多元线性回归  调整R方
import pandas as pd
from matplotlib import pyplot as plt
from sklearn.linear_model import LinearRegression# 导入数据
data = pd.read_csv("./多元_血压.csv", encoding='gbk', engine='python')  # 设置编码方式 设置使用python解释器# 多元线性回归相关系数矩阵
corr = data[['体重', '年龄', '血压收缩']].corr()  # 计算每两列之间的相关系数# 获取数据集
x = data[['体重', '年龄']]
y = data[['血压收缩']]# 建立模型 训练模型
lr_model = LinearRegression()
lr_model.fit(x, y)# 检测模型  出厂前测试
result = lr_model.predict(x)
score = lr_model.score(x, y)  # 多元需要调整R方 这里调整了吗?
# print(result)
# print(score)# 获取多元线性方程的截距和斜率
k = lr_model.coef_
b = lr_model.intercept_
print(f"线性回归方程为: y = {k[0][0]:.2f}x1 + {k[0][1]:.2f}x2 + {b[0]:.2f} ")# 使用新数据进行测试
print(lr_model.predict([[75, 21], [70, 21]]))# 绘制散点图
plt.rcParams['font.sans-serif'] = ['SimHei']  # 设置字体
plt.rcParams['axes.unicode_minus'] = False  # 解决符号显示为方块的问题
ax = plt.axes(projection="3d")
ax.scatter(data['体重'], data['年龄'], zs=data['血压收缩'], marker='o')
ax.set(xlabel="体重", ylabel="年龄", zlabel="血压收缩")
# plt.show()

 

3.运行结果:

 

 

二、实现步骤

1.导入库

# 多元线性回归  调整R方
import pandas as pd
from matplotlib import pyplot as plt
from sklearn.linear_model import LinearRegression

 

2.导入数据

# 导入数据
data = pd.read_csv("./多元_血压.csv", encoding='gbk', engine='python')  
# 设置编码方式 设置使用python解释器

 

3.绘制散点图(这步可以省略)

# 绘制散点图
plt.rcParams['font.sans-serif'] = ['SimHei']  # 设置字体
plt.rcParams['axes.unicode_minus'] = False  # 解决符号显示为方块的问题
ax = plt.axes(projection="3d")
ax.scatter(data['体重'], data['年龄'], zs=data['血压收缩'], marker='o')
ax.set(xlabel="体重", ylabel="年龄", zlabel="血压收缩")
plt.show()

 

 

4.求特征和标签的相关系数

  • 多元线性回归模型可以查看每一列特征与标签的相关系数,达不到弱相关的特征可以进行舍弃。
# 多元线性回归相关系数矩阵
corr = data[['体重', '年龄', '血压收缩']].corr()  # 计算每两列之间的相关系数
  • 相关系数矩阵:

 

5.建立并训练线性回归模型

  • 提取特征数据和标签也在这个步骤一并完成了
# 获取数据集
x = data[['体重', '年龄']]
y = data[['血压收缩']]# 建立模型 训练模型
lr_model = LinearRegression()
lr_model.fit(x, y)

 

6.检验模型

  • 多元需要调整R方

# 检测模型  出厂前测试
result = lr_model.predict(x)
score = lr_model.score(x, y)  # 多元需要调整R方 
# print(result)
# print(score)

 

7.获取线性回归模型方程

代码:

# 获取多元线性方程的截距和斜率
k = lr_model.coef_
b = lr_model.intercept_
print(f"线性回归方程为: y = {k[0][0]:.2f}x1 + {k[0][1]:.2f}x2 + {b[0]:.2f} ")

输出:

线性回归方程为: y = 2.14x1 + 0.40x2 + -62.96 

 

8.利用模型进行预测

代码:

# 使用新数据进行测试
print(lr_model.predict([[75, 21], [70, 21]]))

输出:

[[105.68304051][ 95.00024982]]

 

总结

        多元线性回归模型在,有多个自变量的情况下可能需要调整R²,调整后的R²考虑了模型复杂度,能够更公平地比较不同模型。

http://www.yayakq.cn/news/876136/

相关文章:

  • 如何做wap网站律师事务所网站方案
  • 黄页网站数据来源wordpress 分类文章列表
  • 好的专题网站html5手机论坛网站模板
  • 商务互联做网站怎么样兰州彩票网站制作
  • 网站建设哪公司网站建设记入什么科目
  • 开源系统网站wordpress手机端顶部导航栏
  • 网站怎样做友情链接哈尔滨网站建设工作
  • 手机网站大全排行黄冈建设工程信息网
  • 网站建设需要的框架结构猎头公司排名前十
  • 企业做网站都购买域名吗WordPress支持熊掌号
  • 网站新闻编辑怎么做网上推广怎么拉客户
  • 如何在已建设好的网站做修改做网站用html好还是vue好
  • 网站文章不收录怎么做龙岩正规全网品牌营销招商
  • 天津建设银行公积金缴费网站监理建设协会网站
  • 中山做网站多少钱高级网站建设费用
  • 百度推广官方网站精准营销手段
  • 企业官方网站建设方案wordpress 表单插件
  • 网站后台链接怎么做free wordpress theme
  • 网站备案 拨测程伟网络营销
  • wordpress和python网站问题seo解决方案
  • 百度网站建设优化网站安全维护内容
  • 黄冈网站推广下载宁晋seo网站优化排名
  • 网站首页怎么做芜湖公司做网站
  • 推广网站seo长沙做网站美工的公司
  • 做网页网站网站建立需要什么条件
  • 备案网站名称与实际网站名称不一致哈尔滨全员核酸检测
  • 做网站网上商城多少钱杭州精高端网站建设
  • 扬州建设公司网站怎么做游戏代理
  • 上海网站设计公司Wordpress文章两级审核
  • 网站建设收费大学生跨境电商策划书范文