当前位置: 首页 > news >正文

网站运营是做什么的海南明确2023年封岛

网站运营是做什么的,海南明确2023年封岛,wordpress标签随机调用,门户网站优化前言 一、模型介绍 二、网络结构 1.主干网络(Backbone) 2.颈部网络(Neck) 3.头部网络(Head) 三、算法改进 1.增强的特征提取 2.优化的效率和速度 3.更高的准确性与更少的参数 4.环境适应性强 5.…

前言

一、模型介绍

二、网络结构

1.主干网络(Backbone)

2.颈部网络(Neck)

3.头部网络(Head)

三、算法改进

1.增强的特征提取

2.优化的效率和速度

3.更高的准确性与更少的参数

4.环境适应性强

5.支持广泛的任务

四、性能表现

五、损失函数

六、YOLO11使用详解

1.添加模型

2.创建数据集

3.数据标注

4.模型训练

5.模型预测

总结

1.网络结构与性能提升

2.算法改进与任务扩展

3.灵活部署与广泛应用


前言

YOLO11作为这YOLO系列的最新力作,无疑将目标检测算法推向了一个新的高度。YOLO11在2024年9月30日的YOLOVision活动中正式发布了,这一新版本不仅在性能上有了显著提升,还在功能多样性上迈出了重要一步。


一、模型介绍

YOLO11是由Ultralytics团队于2024年9月30日发布的,它是YOLO(You Only Look Once)系列中的最新成员。YOLO11在之前版本的YOLO基础上引入了新功能和改进,以进一步提高性能和灵活性。这使得YOLO11成为目标检测和跟踪、实例分割、图像分类和姿态估计等多种计算机视觉任务的理想选择。


二、网络结构

YOLO11采用改进的骨干和颈部架构,增强了特征提取能力,提高了物体检测的精确度和复杂任务的表现。相比较于YOLOv8模型,其将CF2模块改成C3K2,同时在SPPF模块后面添加了一个C2PSA模块,且将YOLOv10的head思想引入到YOLO11的head中,使用深度可分离的方法,减少冗余计算,提高效率。

1.主干网络(Backbone)

YOLO1增加了一个C2PSA模块,并且将C2f替换为了C3k2。相比于C2f,当超参数c3k=True时,瓶颈块替换为 C3k,否则还是C2f,而C3k相比于C3则是可以让使用者自定义卷积块大小,更加灵活。C2PSA扩展了C2f,通过引入PSA( Position-Sensitive Attention),旨在通过多头注意力机制和前馈神经网络来增强特征提取能力。它可以选择性地添加残差结构(shortcut)以优化梯度传播和网络训练效果。同时,使用FFN 可以将输入特征映射到更高维的空间,捕获输入特征的复杂非线性关系,允许模型学习更丰富的特征表示。

2.颈部网络(Neck)

YOLO11使用PAN结构,并在其中也使用了C3K2模块。这种结构设计有助于聚合来自不同尺度的特征,并优化特征的传递过程。C3K2模块其实就是C2F模块转变出来的,它代码中有一个设置,就是当c3k这个参数为FALSE的时候,C3K2模块就是C2F模块,也就是说它的Bottleneck是普通的Bottleneck;反之当它为true的时候,将Bottleneck模块替换成C3模块。

3.头部网络(Head)

YOLO11的Head部分和YOLOV8是近似的,YOLO11在head部分的cls分支上使用深度可分离卷积,具体代码如下:

self.cv2 = nn.ModuleList(nn.Sequential(Conv(x, c2, 3), Conv(c2, c2, 3), nn.Conv2d(c2, 4 * self.reg_max, 1)) for x in ch)self.cv3 = nn.ModuleList(nn.Sequential(nn.Sequential(DWConv(x, x, 3), Conv(x, c3, 1)),nn.Sequential(DWConv(c3, c3, 3), Conv(c3, c3, 1)),nn.Conv2d(c3, self.nc, 1),)for x in ch)


三、算法改进

YOLO11在其前身基础上引入了几项重要进步。主要改进包括:

1.增强的特征提取

YOLO11采用改进的骨干和颈部架构,增强了特征提取能力,提高了物体检测的精确度。

2.优化的效率和速度

精炼的架构设计和优化的训练流程实现了更快的处理速度,同时保持了准确性和性能之间的平衡。

3.更高的准确性与更少的参数

YOLO11m在COCO数据集上实现了更高的均值平均精度(mAP),同时使用比YOLOv8m少22%的参数,使其在不妥协准确性的情况下更加计算高效。

4.环境适应性强

YOLO11可以在多种环境中部署,包括边缘设备、云平台以及支持NVIDIA GPU的系统。

5.支持广泛的任务

YOLO11支持多种计算机视觉任务,如物体检测、实例分割、图像分类、姿态估计和定向物体检测(OBB)。


四、性能表现

YOLO11引入精炼的架构设计和优化的训练流程,实现更快的处理速度,同时保持精度和性能之间的最佳平衡。通过模型设计的进步,YOLO11m在COCO数据集上实现了更高的均值平均精度(mAP),同时使用比YOLOv8m少22%的参数,使其在不妥协准确性的情况下更加计算高效。YOLO11可以无缝部署在各种环境中,包括边缘设备、云平台以及支持NVIDIA GPU的系统,确保最大灵活性。无论是物体检测、实例分割、图像分类、姿态估计,还是定向物体检测(OBB),YOLO11都旨在应对多样的计算机视觉挑战。


五、损失函数

Loss 计算包括 2 个分支:分类和回归分支,没有了之前的 objectness 分支。分类分支依然采用 BCE Loss。回归分支使用了 Distribution Focal Loss(DFL Reg_max默认为16)+ CIoU Loss。3 个Loss采用一定权重比例加权即可。

这里重点介绍一下DFL损失。目前被广泛使用的bbox表示可以看作是对bbox方框坐标建模了单一的狄拉克分布。但是在复杂场景中,一些检测对象的边界并非十分明确。如下图左面所示,对于滑板左侧被水花模糊,引起对左边界的预测分布是任意而扁平的,对右边界的预测分布是明确而尖锐的。对于这个问题,有学者提出直接回归一个任意分布来建模边界框,使用softmax实现离散的回归,将狄拉克分布的积分形式推导到一般形式的积分形式来表示边界框。


六、YOLO11使用详解

无论是YOLOv8还是YOLO11,Coovally平台通通可以满足的你的训练需求,而且模型训练对比、实验结果等参数直观对比,满足你的课题研究和商业应用。

1.添加模型

进入Coovally平台点击【全部模型】,搜索YOLO11,在这里可以选择不同的YOLO11版本。下载代码包或者点击另存为我的模型。进入【模型集成】页面,进行安装。

2.创建数据集

进入【图像数据】页面,点击创建数据集,输入数据集名称、描述,选择任务类型,上传压缩包文件。创建数据集时可以按照比例拆分训练集、验证集、测试集。

3.数据标注

进入【辅助标注】页面,点击创建样本集,进入样本集详情页,创建好标签进行数据标注。可以选择几组数据进行人工标注,标注完成后发布为数据集启动微调训练,剩余样本集数据即可全部自动化完成。

4.模型训练

进入数据集详情页,输入任务名称,选择模型配置模版,设置实验E-poch次数,训练次数等信息,即可开始训练。

5.模型预测

模型训练完成后,完成模型转换与模型部署后,即可上传图片进行结果预测。完成后还可以将模型下载与分享。


总结

YOLO11算法提高了检测精度和效率。在有很多物体的视频中,YOLO11的检测效果更好,甚至可以检测到领带等细小物品。

1.网络结构与性能提升

YOLO11通过引入C3K2、C2PSA等模块,增强了特征提取能力,提高了检测精度。同时,采用深度可分离卷积等方法优化计算效率,实现了更快的处理速度和更高的性能。这使得YOLO11在多种计算机视觉任务中表现出色,尤其在复杂场景中更具优势。

2.算法改进与任务扩展

YOLO11在算法层面进行了多项优化,包括增强的特征提取、优化的训练流程等,进一步提升了模型的准确性和效率。此外,它还支持多种计算机视觉任务,如实例分割、图像分类等,满足了更广泛的应用需求。

3.灵活部署与广泛应用

YOLO11具有良好的环境适应性,可以在边缘设备、云平台等多种环境中部署。其高效的计算性能和广泛的应用场景,使得YOLO11成为实时目标检测领域的佼佼者,为科研和商业应用提供了有力支持。


总结来说,YOLOv10不仅是一个新的实时端到端目标检测器,而且在各个方面都有所提升。如果您有兴趣了解更多关于YOLOv10的使用方法等,欢迎关注我们,我们将继续为大家带来更多干货内容!

http://www.yayakq.cn/news/451273/

相关文章:

  • 建一个网站要...百度seo高级优化
  • 网站空间 虚拟主机设计平面广告
  • 做宽屏网站dede网站不能访问
  • 有网站怎么做apphtml网页模板怎么使用
  • 做网站的电销话术乙方宝招标官网
  • 免费资料网站网址下载个人工作室项目
  • seo研究中心好客站网站建设 招聘
  • 如何建立网站数据库珠海网站建设方案维护
  • 手机网站建设维护协议书云企网站建设开发
  • dw网站设计模板绍兴哪些公司做网站
  • 重庆网站建设拓云怎么做租号网站
  • 网站搜索优化公司兴宁电子商务网站建设
  • 电商网站设计教程沈阳定制网站方案
  • 郑州做网站推广外包上海企业建站咨询
  • 外贸网站如何推广优化哪个网站的理财频道做的比较好
  • 在线视频网站怎么做seowordpress免费摄影主题
  • 如何用本机电脑做网站服务器吗soho做网站
  • 亦庄网站设计自适应网站优点缺点
  • jsp网站怎么做wordpress主题解锁
  • 精密模具东莞网站建设wordpress ajax 搜索
  • 网站建设明细价单做网站每年需要购买域名吗
  • 公司网站建设哪里好做网站做的好的公司有哪些
  • 网站优化柳州网络优化推广
  • 站长之家域名查询排行营销技巧心得体会
  • 网站开发维护的工作职责自己开发网站需要多少钱
  • 云南域名注册网站建设logo免费生成网站
  • 河北省建设机械协会是正规网站吗做网站互联网公司
  • 免费的个人主页网站wordpress o2o
  • 网站开发相关书籍做网站的积木式编程
  • 东台网站制作移动网站建设cnfg