当前位置: 首页 > news >正文

设计公司网站建设模板图江苏手机网站建设

设计公司网站建设模板图,江苏手机网站建设,成全视频免费观看在线看咸阳,wordpress设置描述词prerequisite: 最强英文开源模型LLaMA架构探秘,从原理到源码 Llama2 Meta AI于2023年7月19日宣布开源LLaMA模型的二代版本Llama2,并在原来基础上允许免费用于研究和商用。 作为LLaMA的延续和升级,Llama2的训练数据扩充了40%,达到…

prerequisite: 最强英文开源模型LLaMA架构探秘,从原理到源码

Llama2

在这里插入图片描述
Meta AI于2023年7月19日宣布开源LLaMA模型的二代版本Llama2,并在原来基础上允许免费用于研究和商用。

作为LLaMA的延续和升级,Llama2的训练数据扩充了40%,达到2万亿token,并且可处理的上下文增倍,达到4096个token。整体finetuning过程使用了1百万人工标记数据。开源的基座模型包括7B13B70B3个版本,并提供了对话增强版本的Llama chat和代码增强版本的Code Llama,供开发者和研究人员使用。
在这里插入图片描述
在这里插入图片描述

两代模型架构区别

请添加图片描述
Llama 2和初代模型相比,仍然延续Transformer’s decoder-only架构,仍然使用Pre-normalization、SwiGLU激活函数、旋转嵌入编码(RoPE),区别仅在于前述的40%↑的训练数据、更长的上下文和分组查询注意力机制(GQA, Grouped-Query Attention)。

Group-Query Attention

GQA: Training Generalized Multi-Query Transformer Models from Multi-Head Checkpoints

引入GQA的主要目的是提升推理速度,这种注意力机制有transformer的Multi-head Attention简化而来,再辅以KV cache的checkpoint机制进一步提速。
在这里插入图片描述
如上图:

  • 左边是transformer原始的Multi-head Attention,它有H个query,key,value,即每个query单独配一个key和value
  • 右边是其他研究者提出的Multi-query Attention,它在多个query共享同一个key和value
  • 中间则是折中的Grouped-query Attention,它将query进行了分组,仅在组内共享同一个key和value

具体而言,Llama2使用了8组KV映射,即GQA-8,实测效果上接近MHA,推理速度上接近MQA,尽可能做到了效果和速度兼得。
在这里插入图片描述
在这里插入图片描述

对比其他模型

在这里插入图片描述
Llama2在一众开源模型中遥遥领先。

笔者注:模型架构没有太大变化,GQA只是推理加速,但效果提升,那也就是说明主要得益于新增的那40%的数据。坦白讲,大模型阶段模型架构已经不那么重要了,可以保证一定的推理速度即可,效果上dataset is all you need。
在这里插入图片描述
但在闭源模型的比较上,Llama2仅领先PaLM,且仅能做到在MMLUGSM8K两个数据集上接近GPT3.5,与PaLM-2-L和GPT-4相比,仍然落后不少。

Llama-chat训练流程

请添加图片描述
下面我们来聊一聊llama-chat的训练流程,详见原技术论文,以下仅做流程概述:

  1. 自监督预训练
  2. 监督精调
  3. RLHF
    a. 自人类偏好数据集中训练2个奖励模型,分别是Safety Reward ModelHelpful Reward Model ,一个用于对人类偏好进行奖励建模,一个对安全合规进行奖励建模
    b. 先使用Helpful Reward模型进行RLHF,基于Rejection Sampling和PPO
    c. 在helpful的基础上进一步提升安全性,使用Safety Reward Model进行RLHF,也是基于Reject Sampling和PPO,实验证明,Safety RLHF能在不损害helpfulness的前提下有更好的长尾safety棒性

重要的细节上:

  1. PPO(Proximal Policy Optimization),即标准的RLHF使用的方法
  2. Rejection Sampling fine-tuning(拒绝采样微调):采样模型的k个输出,并选择奖励模型认为最好的样本作为输出进行梯度更新

两种RL算法的区别是:

  • 广度上:PPO仅进行一次生成;Reject Sampling会生成k个样本,从中选取奖励最大化的样本
  • 深度上:PPO的第t步训练过程的样本是t-1步更新的模型策略函数;Reject Sampling的训练过程相当于对模型当前策略下的所有输出进行采样,相当于是构建了一个新的数据集,然后在进行类似于SFT的微调

Meta仅在最大的Llama2 70B使用了Reject Sampling,其余模型仅使用了PPO。

Code-Llama

2023年8月24日,Meta推出了面向代码的可商用代码大模型Code Llama,开源了3个版本7B/13B/34B。支持多种编程语言,包括Python、C++、Java、PHP、Typescript (Javascript)、C#和Bash。
在这里插入图片描述
训练流程如下图:
在这里插入图片描述
如图所示,包含3个分支模型,每个分支模型的第一步都是使用500B的token进行Code TrainingInfilling code training

  1. Code Llama-Python(面向python语言的代码模型),第一步之后先用100B token的python代码进行训练,然后再使用20B的token在长上下文的场景上进行finetuning得到最终模型
  2. Code Llama(通用代码模型),第一步之后使用20B的token在长上下文的场景上进行finetuning得到最终模型
  3. Code Llama-Instruct(面向对话的代码模型),第一步之后同Code Llama使用20B的token在长上下文的场景上进行finetuning,然后再在5B的token上进行指令精调

训练集详情如下:
在这里插入图片描述
细节上:

  1. Code Training即使用代码数据进行训练
  2. Code Infilling值得是根据代码上下文预测残缺的代码部分,仅针对代码文本进行挖空预测,方法与Bert的挖空预测类似:
    a. 从完整的代码中选择一部分进行掩码(mask)并替换为<MASK>符号,构成上下文作为输入
    b. 然后采用自回归的方式对mask进行预测

模型效果对比上,神秘的unnatural版本在HumanEval的pass@1上领先GPT-3,接近于GPT-4(5%左右差距),其余部分明显领先PaLM系列和StarCoder系列模型:
在这里插入图片描述

参考文献

  1. https://ai.meta.com/llama/
  2. Llama 2: Open Foundation and Fine-Tuned Chat Models
  3. 大模型技术实践(二)|关于Llama 2你需要知道的那些事儿
  4. GQA: Training Generalized Multi-Query Transformer Models from Multi-Head Checkpoints
  5. 大规模预训练语言模型方法与实践,崔一鸣,北京BAAI,2023年8月26日
  6. https://ai.meta.com/blog/code-llama-large-language-model-coding/
  7. Code Llama: Open Foundation Models for Code
http://www.yayakq.cn/news/455864/

相关文章:

  • 浏览器大全网站明星粉丝网站怎么做
  • 网站ui设计要点网站建设单位有哪些
  • 免费ppt模板的网站花店网站建设需求
  • 中华建设杂志社网站shopee怎么注册开店
  • 什么网站必须要flash校园网站建设总体设计
  • 鞋材加工东莞网站建设互联网培训班学费多少
  • 企业怎么做网站做网站的公司汉字logo设计生成器
  • 网站套站安徽合肥制作网站公司吗
  • 深圳在建高铁站档案网站建设优秀代表
  • 网站编程用什么语言联通专线做网站
  • 合肥做企业网站设计制作过程
  • ktv网站模板wordpress 生成目录
  • 阿里云做网站用哪个镜像临沂百度代理公司有几个
  • 怎么查网站有没有做推广买公司的网站建设
  • 做甜品台的网站2024房地产最新消息
  • 网站建设费用 优帮云贵阳新闻最新消息今天
  • 东莞教育平台网站建设百度站长平台网站改版工具
  • 永州微网站建设网站程序 制作
  • 自适应网站什么做东莞网站优化科技有限公司
  • 建站模板网小说网站防盗做的最好的是
  • 网站建设论文摘要百家号优化
  • 迪虎科技网站建设网站页面优化
  • 南京专业做网站公司地址培训类网站模板
  • 大型网站运营步骤网站seo方案撰写
  • 搜索引擎网站推广法怎么做gif图片制作器
  • 阿里云做的网站怎么样免费做推广的网站有哪些
  • html5微网站模板网站建设技术支持 会天下
  • 做面包国外网站如何寻找客户
  • 玉林市网站建设wordpress插件包
  • 网站建设需要用到什么软件有哪些建设网站前的目的