当前位置: 首页 > news >正文

php招聘网站开发流程装修风格有哪些

php招聘网站开发流程,装修风格有哪些,义乌网站建设方案详细,太原网站制作推荐1. 三相静止坐标系与两相静止坐标系的坐标变换―αβ0坐标变换 若上述x、y坐标系在空间静止不动,且x轴与A轴重合,即,如图1所示,则为两相静止坐标系,常称为坐标系,考虑到零轴分量,也称为αβ0坐标…

1. 三相静止坐标系与两相静止坐标系的坐标变换―αβ0坐标变换

       若上述x、y坐标系在空间静止不动,且x轴与A轴重合,即\theta =0,如图1所示,则为两相静止坐标系,常称为\alpha \beta坐标系,考虑到零轴分量,也称为αβ0坐标系。

图1.  ABC坐标系与\alpha \beta坐标系

       从三相静止坐标系到两相静止坐标系的变换称为三相-两相变换,简称3/2变换。由下式,

\left[ \begin{array}{c} i_A \\ i_B \\ i_C \end{array} \right] = \left[ \begin{array}{ccc} \cos\theta & -\sin\theta & 1 \\ \cos(\theta - 120^\circ) & -\sin(\theta - 120^\circ) & 1 \\ \cos(\theta + 120^\circ) & -\sin(\theta + 120^\circ) & 1 \end{array} \right] \left[ \begin{array}{c} i_x \\ i_y \\ i_0 \end{array} \right] = \mathbf{C}_{2r/3s} \left[ \begin{array}{c} i_x \\ i_y \\ i_0 \end{array} \right]

\theta =0可得

\left[ \begin{array}{c} i_a \\ i_\beta \\ i_0 \end{array} \right] = \frac{2}{3} \left[ \begin{array}{ccc} 1 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{array} \right] \left[ \begin{array}{c} i_A \\ i_B \\ i_C \end{array} \right]      (1)

C_{3/2}表示从三相静止坐标系到两相静止坐标系的变换矩阵,则

\mathbf{C}_{3/2} = \frac{2}{3} \left[ \begin{array}{ccc} 1 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{array} \right]      (2)

相应地,从两相坐标系到三相坐标系的变换矩阵为

\mathbf{C}_{2/3} = \mathbf{C}_{3/2}^{-1} = \left[ \begin{array}{ccc} 1 & 0 & 1 \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} & 1 \\ -\frac{1}{2} & -\frac{\sqrt{3}}{2} & 1 \end{array} \right]      (3)

式(2)和式(3)不满足功率不变约束。由上一节式(9),令\theta =0可得满足功率不变约束的从三相静止坐标系到两相静止坐标系的变换矩阵

\mathbf{C}_{3/2} = \sqrt{\frac{2}{3}} \left[ \begin{array}{ccc} 1 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{array} \right]      (4)

相应地,从两相坐标系到三相坐标系满足功率不变约束的变换矩阵为

\mathbf{C}_{2/3} = \mathbf{C}_{3/2}^{-1} = \mathbf{C}_{3/2}^T = \sqrt{\frac{2}{3}} \left[ \begin{array}{ccc} 1 & 0 & \frac{1}{\sqrt{2}} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} & \frac{1}{\sqrt{2}} \\ -\frac{1}{2} & -\frac{\sqrt{3}}{2} & \frac{1}{\sqrt{2}} \end{array} \right]     (5)

       在实际应用中,上述坐标变换关系常可进一步简化。例如,在交流调速系统中,交流电机通常为中性点隔离的三相星型连接(Y接),有i_{A}+i_{B}+i_{C}=0,则i_{0}=0,因此可将零轴分量去掉。同时,由于三相电流中只有两相独立,三相系统中的电流可以只用i_{A}i_{B}表达,而将C相电流用i_{C}=-(i_{A}+i_{B})代入。相应的坐标变换关系简化为

\left[ \begin{array}{c} i_\alpha \\ i_\beta \end{array} \right] = \left[ \begin{array}{cc} 1 & 0 \\ \frac{1}{\sqrt{3}} & \frac{2}{\sqrt{3}} \end{array} \right] \left[ \begin{array}{c} i_A \\ i_B \end{array} \right] \text{or} \left[ \begin{array}{c} i_\alpha \\ i_\beta \end{array} \right] = \left[ \begin{array}{cc} \sqrt{\frac{2}{3}} & 0 \\ \frac{1}{\sqrt{2}} & \sqrt{2} \end{array} \right] \left[ \begin{array}{c} i_A \\ i_B \end{array} \right]     (6)

以及

\left[ \begin{array}{c} i_A \\ i_B \end{array} \right] = \left[ \begin{array}{cc} 1 & 0 \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{array} \right] \left[ \begin{array}{c} i_\alpha \\ i_\beta \end{array} \right] \text{or} \left[ \begin{array}{c} i_\alpha \\ i_\beta \end{array} \right] = \left[ \begin{array}{cc} \sqrt{\frac{2}{3}} & 0 \\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} \end{array} \right] \left[ \begin{array}{c} i_A \\ i_B \end{array} \right]     (7)

        可见,三相/两相变换(3/2变换)是任意速xy0坐标系当其转速等于零时的特例。3/2变换是静止坐标系之间的变换,因此其变换矩阵中所有元素均与坐标旋转角\theta无关,都是常数。

        隐极三相交流电机的定子和转子的电感矩阵,经过\alpha \beta 0变换将成为对角矩阵。因为,从三相变为两相系统后,由于\alpha轴和\beta轴在空间互相垂直,互感为零,而零序又是一个孤立的系统,所以

\alpha\beta、0三根轴线之间达到“解耦”。这一点,以后在感应电机的分折中将会用到。

2. 三相静止坐标系与两相转子速旋转坐标系的坐标变换―dq0坐标变换

       

图2.dq0坐标变换

        dq0坐标系是一种与转子一起旋转的两相坐标系和零序系统的组合。若转子为凸极,则d轴(直轴)通常与凸极的中心轴线重合,q轴(交轴)超前于d轴90“电角,如图2所示。dq0 变换是从静止的ABC坐标系变换到转子速旋转的dq0坐标系的一种变换。dq0分量首先由帕克(Park)提出.所以亦称为帕克分量。显然,dq0坐标变换的变换矩阵在形式上与xy0坐标变换的变换矩阵完全相同,

只不过,dq0坐标系是一种与转子一起旋转的坐标系,而xy0坐标系是一种以任意速旋转的坐标系。可见,dq0坐标系是任意速xy0坐标系当其转速等于转子速时的特例,当然,\alpha \beta 0坐标系也是

xy0坐标系当其转速等于零时的特例。

       dq0坐标变换主要用于凸极同步电机的瞬态分析中,在转速为常值和磁路为线性的条件下,它可以把含有时变系数的自感和互感所组成的定子电感矩阵,通过坐标变换,变成元素为常数的对角线矩阵,达到“解耦”和“元素常数化”的目的,使凸极电机的分析大为简化。

       \alpha \beta 0坐标变换和dq0坐标变换是电机瞬态分析中最常用的坐标变换。

http://www.yayakq.cn/news/944929/

相关文章:

  • 佛山做网站哪家公司好宁波北仑装修公司排行
  • 西安做网站公司云速海南免费发布信息平台
  • 企业网站如何维护建筑设计专业是干什么的
  • 免费金融发布网站模板下载建筑学院app网站
  • 北京手机网站制作公司国外搜索引擎大全百鸣
  • 百度站长平台验证网站做机网站
  • 网络彩票的网站怎么做佛山淘宝设计网站设计价格
  • 自助搜优惠券网站怎么做的北京地铁建设的网站
  • 申请做网站中国企业500强排行榜2021
  • 在线学习平台网站建设有什么功能网站推广话术与技巧
  • 防城港市建设工程质量监督站网站怎么推广公司网站
  • 做书app下载网站有哪些做细胞激活的母液网站
  • 网站建设预算明细表ui做的好看的论坛网站
  • 平阳企业网站建设定制棺材网站
  • discuz 科技网站模板下载浙江舟山城乡建设网站
  • 茂名网站建设优化seo没有服务器怎么先做网站
  • 酒店房产网站建设网站建设怎么添加视频
  • 温州市企业网站制作网站备案的规划方案
  • 做文案的网站有些什么动漫制作专业简介
  • 怀柔网站建设优化seo做公众号的网站有哪些
  • 如何建立一家网站北京网站报价
  • 手机网站建设实验报告做女团学什么舞蹈视频网站
  • 美食网站建设服务策划书腾讯qq网页版
  • 四川省建设厅燃气网站网站还在建设中英文
  • 简易企业网站网站费用
  • 沧州企业网站专业定制深圳维特网站建设
  • 建设个人网站的参考网站及文献经典vi设计案例分析
  • etsy网站网站建设的各个环节
  • net网站同时支持 生成静态文件和伪静态阿里云网站建设方案书
  • 网站 ip地址是什么设计北京