当前位置: 首页 > news >正文

网站如何做二级栏目怎样实现wordpress订单提醒功能

网站如何做二级栏目,怎样实现wordpress订单提醒功能,中建八局招聘最低学历,室内设计联盟论坛线性映射 线性映射是将向量作为输入并产生一些新向量作为输出的转换。 从坐标定义开始(数组),再到2,3,并展示它们是如何关联的 线性映射的坐标表示最终是矩阵, 1.坐标定义(数组) 列向量是向量的坐标表示…

线性映射

线性映射是将向量作为输入并产生一些新向量作为输出的转换。

从坐标定义开始(数组),再到2,3,并展示它们是如何关联的

线性映射的坐标表示最终是矩阵,

1.坐标定义(数组)

列向量是向量的坐标表示。

行向量是协向量的坐标表示。

矩阵是线性映射的坐标表示。

矩阵是如何转变向量的?

例子

现有一个作用于2x1列向量的2x2矩阵,输出的向量是?

但仅通过查看矩阵中的数字来理解矩阵在做什么会让人感到困惑。


但对所有这些数字的含义,有一个简单的解释:
注意,若使用列向量 [1 , 0 ]^{T}作为输入,将得到矩阵的第一列作为输出。
           若使用列向量 [ 0 , 1]^{T}作为输入, 将得到矩阵的第二列作为输出。

现这些列向量 [1 , 0 ]^{T} 、 [ 0 , 1]^{T}   , 它们有点基向量e1、e2的副本
之所以说是副本,是因为这里非常重要的一点:线性映射转换向量,但是线性映射不转换基向量!
因此,当使用线性映射转换向量时,基底是不会变的。  我们不会移动基底,

 虽然输出向量可能与输入向量不同,但我们仍将使用相同的基底来测量输出向量,但话虽如此,对于矩阵,第 i 列会告诉你将第 i 个基向量的副本映射到哪里。

因此,从视觉上观察一下,
现有两基底:e1、e2,还有两向量v,w。v和w有点像e1、e2的副本,

有个矩阵如下:                
        ​​​​​​​        ​​​​​​​        

那么该矩阵会将向量v(v像e1的副本)发送到哪?

只看矩阵的第一列,

它表示向量5e1+3e2 , 这就是线性映射的输出,


V在视觉上:

矩阵对向量w(e2的副本)做了什么?

看矩阵的第二列,给我们输出 -e1+4e2

视觉上:

注意到,基向量没有移动,因为线性映射不会改变基底,我们仍用相同的基底测量输出向量,

所以,综上,矩阵是线性映射的坐标解释。

2.几何定义(线性映射视为图片)

线性映射 是 空间转换,并且保持线平行, 保持线间隔均匀,保持原点静止。

为从视觉上了解它的外观,从2D空间开始,上面有一堆网格线:

(初始的输入空间?)

这里有三个线性映射的例子:

所以,上面这个线性映射基本上只是水平方向的拉伸。

这个线性映射像一个旋转,

这个线性映射像做一个倾斜变换(可把它想象成在这个方向上做一个旋转,然后沿着这个轴伸展)。

正如上面这些图所示,在所有这些情况下, 输出空间中的网格线仍然彼此平行, 都是均匀分布的(即使间距与输入空间不同),并且原点没有移动。

所有的上面这些都是线性映射可以做到的。

(注意,在该定义下,translation are not linear maps------平移不是线性映射。即使平移能使得网格线平行,间距均匀,但平移会移动原点,所以平移不是线性映射)

所以,这就是可视化的几何定义。

 

3.抽象定义(纯代数)

线性映射 是将 向量 映射 到 向量 的函数

在该情况下,现有一映射L将 向量从向量空间V 映射到 向量空间W,我们很多例子涉及到的映射是从空间V映射到 空间V, 但一般来说,输入和输出空间可以不同。

且线性映射在这里遵循两个属性:

1、可添加线性映射的输入或输出并得到相同的答案。

2.可缩放输入或缩放输出并得到相同的答案。

这两个属性被称为“线性”、 。 所以协向量和线性映射都是线性函数。唯一的区别是:协向量输出一个标量,线性映射输出向量。

下面展示 这个抽象定义 如何 与我们看到的其他定义相关联。

如前所说,有这个属性:

现展示它的几何意义,在网格上绘制输入变量,这里我们有绿色的向量v和紫色的向量w,

v+w 用黑色表示。

现展示这图中的三个线性映射是如何服从这个代数性质的。

在这些所有的输出空间中可以看到,加法定律仍然有效,

对缩放规则(第二个属性)也做同样的事情。

因此,先缩放再转换 与 先转换再缩放 是一回事。

还有一个问题,坐标定义的来源

对于下图这个矩阵乘法公式,若你不知道它背后的原因,它看起来真的很奇怪。

事实证明,矩阵乘法规则实际上来自上面这个抽象定义,

证明:

首先我们有一个线性映射L,它作用于向量V,并产生输出向量W,

若将向量V拓展成它的分量,就能得到

通过L的线性规则,得到:

e1、e2是向量,所以你可能会问如何根据   基底e1、e2来表达这些向量,
现做个 简单的假设:
假设线性映射L是从V到V的函数,因此输入空间和输出空间是相同的。
因此,输出空间V仍然具有基底e1、e2,

这意味着我们仍然可以将 这些输出向量 写为相同的旧基 e1、e2的线性组合,

而这些线性组合的系数L_{1}^{1},L_{1}^{2},L_{2}^{1},L_{2}^{2},

这些L系数帮助我们使用“e”基底向量构建线性映射的输出向量。
 

所以,可以将输出向量重写为基的线性组合,并且可在此切换内容为以按基向量e1、e2来重新分组,

现在,由于将W写成基向量的线性组合,

因此,这些系数 实际上 只是W的分量:w1、w2 , 

所以现在我们已经推到出 如何使用这些公式将V系数转换为W系数,

而这些公式 就是那些当你做标准的2x2矩阵乘以一个2x1的列向量。

现总结一下,如果我们有一个线性映射L,它可以像这样将向量V转换为另一个向量W,其中W可以写成基底的线性组合,并且我门知道如何使用L系数转换基底(或者说我们知道L如何转换基向量副本可能更好)

这意味着我们可以在这里使用这些公式将V分量变为W分量。

如果对任意数量的维度重复这个论点,如果我们有一个n维的线性映射L,
我们将从这里的公式中得到所有的L系数,然后可以使用这个公式将V分量转换为W分量,

http://www.yayakq.cn/news/877083/

相关文章:

  • 有什么可以做翻译的网站吗使用joomla的网站
  • 校园互动网站建设wordpress 强制ssl
  • 郑州个人做网站汉狮wordpress彻底禁用google
  • 电商网站改版思路房山区做网站
  • 网站维护的具体方法注册了域名怎么添加到自己的网站
  • PS做网站页面尺寸学生建设网站
  • 昆明百度智能建站蘑菇街网站模板
  • 自己做网站 最好的软件生活信息网站建设
  • 长宁网站制作wordpress 给标签加id
  • 1.简述网站建设的步骤网站设计论文开题报告
  • 哈尔滨公司网站团队网站排名首页前三位
  • 利用建站系统wordpress建设网站传媒公司手机网站模板
  • 做网站需要的带宽上行还是下行想开一家相亲网站 怎么做
  • 小说网站建设多少钱微信如何做商城网站
  • 如何做网站源码ps教程自学网新手教程详细步骤
  • 网站评测的作用在凡科建设网站的流程
  • wordpress建站文本教程软文云
  • 封面设计网站有哪些炫富做图网站
  • 招聘网58同城招聘发布山西seo和网络推广
  • 广州网站建设哪里有pac网站代理
  • 网站的营销方式有哪些ae模板免费下载网站
  • 一学一做短视频网站wordpress常用插件汇总
  • 网站开发招标评分标准html代码分享
  • 福州专业网站开发很专业网站百度显示绿色官网字如何做的
  • 建网站资阳哪家强?成都如何寻找做网站的
  • 济南制作网站公司哪家好个人做外贸哪个平台好
  • 销售类网站数据库的建设青岛建设网站企业
  • 网站托管服务协议网站开发app定制
  • 大型网站建设定制开发营销软文800字范文
  • 优秀网站作品一件代发货源app