当前位置: 首页 > news >正文

网站建设合同内容与结构官方网站怎么推广

网站建设合同内容与结构,官方网站怎么推广,公司网站制作导航,excel小程序商店众所周知,深度学习的环境往往非常麻烦,经常不同的项目所依赖的 torch、tensorflow 包对 CUDA 的版本也有不同的要求,Linux 下进行 CUDA 的管理比较麻烦,是一个比较头疼的问题。 随着 WSL2 对物理机显卡的支持,Nvidia-…

众所周知,深度学习的环境往往非常麻烦,经常不同的项目所依赖的 torch、tensorflow 包对 CUDA 的版本也有不同的要求,Linux 下进行 CUDA 的管理比较麻烦,是一个比较头疼的问题。

随着 WSL2 对物理机显卡的支持,Nvidia-Docker 也提供了对容器显卡的支持。我们可以通过拉取不同的 Docker 镜像的方式来实现对容器内 CUDA、CUDNN 的自由切换,操作非常简易。

1. Win11 显卡驱动的安装

注意:WSL2中是不需要且不能安装任何显卡驱动的,它的显卡驱动完全依赖于 Win11 中的显卡驱动,因此我们只需要安装你显卡对应的 Win11 版本显卡驱动版本(必须是 Win11 版本的驱动),这个已经有很多教程了,这里就不赘述。如果你安装成功,可以在 Win11 的 cmd 中输入 nvidia-smi可以看到下图。
在这里插入图片描述

因为 WSL2 中的显卡驱动完全依赖于 Win11 的显卡驱动,因此在 WSL2 中输入 nvidia-smi 也可以看到相同驱动版本的输出。
请注意:这里的 nvidia-smi 能作用的范围,只作用于你 Win11 安装显卡驱动时所登录的那个用户名对应到 WSL2 中的用户名。比如我是在 Win11 (guosongyuan) 用户上安装的显卡驱动,那么我只能在 WSL2 的 gsy 用户状态下才能执行该 nvidia-smi 指令,root 用户执行该命令是不能生效的。

在这里插入图片描述

2. 安装 Docker 和 Nvidia-Docker

  1. 安装 Docker 引擎可以参考文档:Docker 引擎官方安装教程;
  2. 安装 Docker 引擎之后,就可以在其基础上安装 Nvidia-Docker 组件:Nvidia-Docker 安装教程。
    这两个步骤非常简单,如果看不懂英语的话直接用谷歌翻译就好。

3. 选择合适的 CUDA 和 CUDNN 的镜像

使用 Nvidia-Docker 的好处就在于,你不需要真的在 WSL 中安装 CUDA 和 CUDNN,这样就可以避免在配置不同项目环境时遇到的很麻烦的环境切换问题。我们只要每次遇到一个新的项目,拉取对应的 CUDA 和 CUDNN 版本即可,即插即用,不想用了直接删除对应的镜像和容器即可,跟删除软件一样方便。

这里以安装 CUDA 11.2.0 版本为例,我们来到 Docker 镜像市场:Docker HUB,在其中搜索关键字 nvidia/cuda,如下图。
在这里插入图片描述

点进入,在 Tags 中搜索对应的 CUDA 版本,注意同一个版本下对应三种不同的类型(devel、runtime、base),我们推荐安装 devel 版本,因为它的环境更齐全,我们这里因为 WSL2 是 Ubuntu 20.04 版本的,所以我们选择镜像的时候选择 ubuntu20.04 后缀的。
这里以 nvidia/cuda:11.2.0-cudnn8-devel-ubuntu20.04 镜像为例,通过 sudo docker pull nvidia/cuda:11.2.0-cudnn8-devel-ubuntu20.04 将镜像拉取下来。

拉取镜像之后,我们可以查看当前镜像中的显卡驱动、CUDA版本和 CUDNN 的版本。

  1. 查看显卡驱动版本:sudo docker run --rm --gpus all nvidia/cuda:11.2.0-cudnn8-devel-ubuntu20.04 nvidia-smi
  2. 查看 CUDA 版本:sudo docker run --rm --gpus all nvidia/cuda:11.2.0-cudnn8-devel-ubuntu20.04 nvcc -V
  3. 查看 CUDNN 版本,因为镜像官方将 CUDA 和 CUDNN 进行了解耦合,因此我们需要分两步进行查询操作。首先通过 sudo docker run --rm --gpus all nvidia/cuda:11.2.0-cudnn8-devel-ubuntu20.04 whereis cudnn,看到 cudnn.h 所在路径 cudnn: /usr/include/cudnn.h。我们根据这个输出结果,把 cudnn.h 之前的 include 路径记住,查询该 include 下的 cudnn_verseion.h 文件:sudo docker run --rm --gpus all nvidia/cuda:11.2.0-cudnn8-devel-ubuntu20.04 cat /usr/include/cudnn_version.h | grep CUDNN_MAJOR -A 2,这样就能看到 CUDNN 的版本号了。
    在这里插入图片描述

4. 利用拉取的镜像构建自己的镜像

我们拉取的镜像中只有最基础的 CUDA 和 CUDNN,还没有配置 Anaconda、换源、git 、pip 等常用工具,因此我们将这些可能用到的常用工具将其打包好。

为了构建镜像,我们在用户目录下创建一个名为 mkimage 的目录,在其中放入我们需要的三个内容: Anaconda3-5.2.0-Linux-x86_64.sh、Dockerfile、sources.list,其中 sources.list 是用来给 Ubuntu apt 换源用的。

sources.list 内容如下:

######################################
###### CONTENT for sources.list ######
######################################deb http://mirrors.aliyun.com/ubuntu/ focal main restricted universe multiverse
deb-src http://mirrors.aliyun.com/ubuntu/ focal main restricted universe multiversedeb http://mirrors.aliyun.com/ubuntu/ focal-security main restricted universe multiverse
deb-src http://mirrors.aliyun.com/ubuntu/ focal-security main restricted universe multiversedeb http://mirrors.aliyun.com/ubuntu/ focal-updates main restricted universe multiverse
deb-src http://mirrors.aliyun.com/ubuntu/ focal-updates main restricted universe multiversedeb http://mirrors.aliyun.com/ubuntu/ focal-proposed main restricted universe multiverse
deb-src http://mirrors.aliyun.com/ubuntu/ focal-proposed main restricted universe multiversedeb http://mirrors.aliyun.com/ubuntu/ focal-backports main restricted universe multiverse
deb-src http://mirrors.aliyun.com/ubuntu/ focal-backports main restricted universe multiverse

Dockerfile内容如下:

####################################
###### CONTENT for Dockerfile ######
##################################### Extends from father image [CHANGE WITH YOUR NEED]
FROM nvidia/cuda:11.2.0-cudnn8-devel-ubuntu20.04# Set locale
ENV DEBIAN_FRONTEND noninteractive# Change anaconda source
# ADD means copy file from host machine to containers
ADD sources.list /etc/apt/
ENV PATH /opt/conda/bin:$PATH# Install basic dependencies
RUN rm /etc/apt/sources.list.d/cuda.list && \rm /etc/apt/sources.list.d/nvidia-ml.listRUN apt-get update && apt-get install -y --no-install-recommends \bzip2 \g++ \git \vim \python-dev \python3-pip \build-essential \wget && \rm -rf /var/lib/apt/lists/*# Install Anaconda for python 3.6
ADD Anaconda3-5.2.0-Linux-x86_64.sh /home/anaconda.sh
RUN /bin/bash /home/anaconda.sh -b -p /opt/conda && \ln -s /opt/conda/etc/profile.d/conda.sh /etc/profile.d/conda.sh && \rm /home/anaconda.sh# Change sources for conda, add tsinghua sources and remove defaults
RUN conda config --add channels http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/ && \conda config --add channels http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/ && \conda config --add channels http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/ && \conda config --add channels http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/ && \conda config --add channels http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/pro/ && \conda config --remove channels defaults# Change sources for pip3
RUN mkdir ~/.pip && \echo "[global]\nindex-url = http://mirrors.aliyun.com/pypi/simple/\n[install]\ntrusted-host = mirrors.aliyun.com" > ~/.pip/pip.conf# Initialize workspace
RUN mkdir /workspace
WORKDIR /workspaceCMD ["/bin/bash"]

其中,Anaconda3-5.2.0-Linux-x86_64.sh 可以在 Anaconda Archive 中找到。

然后,我们可以通过下列指令制作镜像 my-nvidia/cuda:11.2

cd ~/mkimage
sudo docker build -f Dockerfile -t my-nvidia/cuda:11.2 .

经过漫长的等待,我们可以看到一个 Successfully 提示消息,证明我们镜像打包成功。
在这里插入图片描述

构建完成后,我们可以通过下面这个指令进行容器的创建:

sudo docker run -it --gpus all --name cuda_11.2 my-nvidia/cuda:11.2 /bin/bash

进入容器之后,我们可以通过 nvidia-sminvcc -Vconda info 查看当前的显卡驱动、CUDA版本和 conda 源信息。
如果使用 conda 安装包的时候出现了conda Malformed version string ‘~’: invalid character(s)报错,可以使用下面的命令更新一下 conda。

conda upgrade -n base -c defaults --override-channels conda
conda update --all

我这里从 PyTorch 官网中下载了一个对应 CUDA 版本的 torch(我创建了一个名为 pytorch 的 conda 虚拟环境),可以看到在容器中 GPU 资源是可以正常被访问的。这样我们以后就可以随时切换 CUDA 版本了,是不是很方便?
在这里插入图片描述

http://www.yayakq.cn/news/191274/

相关文章:

  • 网站开发项目报价单淮安市建设银行网站首页
  • 北京迈程网络网站建设公司站长工具中文
  • 商城网站建设价格费用全屏企业网站
  • 网站制作的动画怎么做的厦门网站建设u
  • 南昌网站建站优化最狠的手机优化软件
  • 一般做兼职在哪个网站优秀网站专题
  • 网站风格设计企业专业网站建设哪家好
  • 建筑工程网站大全网络推广网站制作
  • 专业网站建设模块辽宁省城乡建设厅官方网站
  • 免费asp公司网站模板运营网站需要多少钱
  • 地方文明网站建设学平面设计的网站
  • 网站建设与管理工作内容网站建设 中企动力 扬州
  • 淘宝客网站做好了该怎么做多商家平台
  • 做钓鱼网站教程视频教程解析软件的网站
  • 生产企业做网站有用吗做外贸怎么找客户
  • 企业网站设计需求文档seo优化推广招聘
  • 浙江做网站套餐修水网站建设
  • 哪个网站科技新闻好wordpress logo更换
  • 开发网站要多少钱太原做网站公司5大建站服务
  • 网站建设例子html商品页面代码
  • 优秀网站制作定制政法队伍建设网站主要内容
  • 网站数据泄露我们应该怎么做网站都是在哪里制作的
  • 昆明展示型网站开发硚口区建设局网站
  • 自学网站开发百度云资源深圳网页制作十大公司
  • 网站建设维护服务协议电子商务网站推广实训报告
  • 可以做商品砍价的网站网站未备案做seo会被k吗
  • 网站数据分析报告传奇世界页游
  • 自己做家具网站网页设计综合案例
  • 百科网站开发便捷网站建设推荐
  • 静态网站建设规划dede免费手机网站模板